Impact Crater Morphology

Craters on Earth

Wolf Creek, Australia

Meteor Crater, Arizona

Venus as a Planet

- Diameter $=12,104 \mathrm{~km}$
- Density $=5.2 \mathrm{~g} / \mathrm{cm}^{3}$
- Rotation Period = 243 days (retrograde)
- Surface P = $92 \times$ Earth's
- Ave. Surface T $=460^{\circ} \mathrm{C}$
$=733 \mathrm{~K}=860^{\circ} \mathrm{F}$

- Ave. Distance from Sun = $1.08 \times 10^{8} \mathrm{~km}$

Introduction: Venus

- Elevation, unimodal $=-3.9$ to 12 km
- Mostly flat plains with some topographic swells, volcanoes, dune fields, rift valleys, ~ 1000 impact craters.
- No Plate Tectonics!!!

From Freedman \&
Kaufmann III (2002)

- Surface $=500$ m.y. old
- Equilibrium Resurfacing Hypothesis
- Global Catastrophe Hypothesis

Objectives: Venus

- To interpret morphology \& evolution of impact craters in the BAT region.
- Impact craters used to study plume related features.
- Regiones - extending 1000’s of km (Solomon et al., ‘91; Smrekar et al., ‘97)
- Radiating graben-fissure systems - 100's of km (Grosfils and Head, '94; Ernst et al., '03)
- Coronae - ave. D ~250 km (Stofan et al., '92)
- To assess thickness of parabolic deposits with crater Von Schuurman.

The Magellan Mission

- Launched: 1989
- Arrived: 1990
- Crashed: 1994
- Single instrument: SAR, altimeter, \& radiometer
- Wavelength $=12.6 \mathrm{~cm}$
- Pulse length $=26.5$ microsec
- Frequency $=2.385 \mathrm{GHz}$
- 3 Cycles: 98% surface mappeq
- C1 - left
- C2 - right
- C3-left

Venus, sweet mystical star Earthlike, but hotter by far No use to peruse
Unless you can use
Synthetic-Aperture-Radar
-- Anonymous

SAR images

- Slope (Ovda Regio)
- Away - elongated, shadow
- Towards foreshortened, bright
- Roughness (Crater Aurelia)
- Rough - diffuse reflectors
- Reflectivity (Maxwell Montes)
- Above 4 km high, reflectivity is common
- chemical weathering

26% of impact craters on Venus have been modified: 158 T (~18\%); 55 E (~6\%) ; 19 TE (2\%)

Analysis: Venus

- 38 impact craters
- Magellan radar images
- F-MDIRs \& C1-MDIRs - 75 \& 225 m/pixel, respectively
- Detailed geologic maps
- Magellan Altimetry
- Topography 3-D view
- Dip for craters and surrounding area

Truth (28.7 N, 287.8 E, 46.1 km)

Pristine (Izenberg, Herrick, Schaber)
Images show a prominent radar-bright outflow feature to the south of this crater. The crater tilts to the south and the outflow apparently emanates from within the central peak area.

Magellan Altimetry

Results: Topographic Swells

- Atla and Themis Regiones - craters predominantly tectonized
- Exception: Richards \& Uvaysi - multiple embayment
- Craters on Beta - mostly embayed
- Presence of parabolic craters on Atla activity recent
- Atla contains higher concentration of modified craters than Beta
- Atla's craters dip away from rift

Results:

Radiating Fissure Systems

- Grosfils \& Head ('94): 163 large radial systems
- Ernst et al. ('03): Northern Beta Regio
- 6 giant radiating systems -> 5 dike swarms

Stage 2
Uplift with Radial Fracturing

[^0]

Stage 2
Dike Emplacement with Lava Flows \& More Tectonic Deformation

Results:
 Radiating Fissure Systems

- Hypothesis \# 1 - uplift
- Truth and Nalkoswka - neither tilts away from radiating center
- Collapse of the systems more than recent uplift (West, Sanger)
- Hypothesis \# 2 - dikes
- Little evidence of crater modification by volcanic or tectonic processes
- Raisa - TE - on the youngest system
- Central reservoir near surface unlikely or dikes never reach surface

Embayed-only, but image reveals a slightly disturbed ejecta blanket. Note the radar-bright outflows to the E and SE opposite in direction to current dip.

Sanger (33.8 N, 288.6 E, 83.8 km)
Possibly tectonized and embayed. Clear halo crater according to Basilevsky and Head (2002) with outflows in the NW (< 250 Ma).

Conclusions: Venus

- Ongoing obliteration of impact craters, BAT area
- Uvaysi - establishes the timing of activity there as recent ($30-75 \mathrm{~m} . \mathrm{y}$)
- Atla is younger, more active than Beta
- Modified craters: 33\% Atla vs. 23\% Beta
- On Atla E craters are negligible, T craters occur only at low elevations; 4 TE craters cluster near geoid high
- Beta’s modified craters are randomly distributed

Conclusions: Venus

- Radiating fissure systems have caused little modification of impact craters

Hypothesis \# 2

- Dips of craters suggest collapse of the radiating systems (R3, R8)

Mars: The Red Planet

- Diameter $=6,794 \mathrm{~km}$
- Density $=3.9 \mathrm{~g} / \mathrm{cm}^{3}$
- Rotation Period $=24: 37: 22$ days
- Surface P = $0.1 \times$ Earth's
- Mean Surface $T=-53^{\circ} \mathrm{C}$
$=220 \mathrm{~K}=-63^{\circ} \mathrm{F}$
- Ave. Distance from Sun =
$2.28 \times 10^{8} \mathrm{~km}$

Objectives: Mars

- To examine enigmatic deposits forming a bulge with 3 craters of similar size, midlatitudes

PLAINS-PI
HEAVILY CRATERED-HC

RIDGED PLAINS-Ri \square
VOLCANIC PLAINS-Vo

CANYON/DEPOSITS-CD \square
CHANNELS/CHAOTIC-Ch \square

28.3 N, 116.7 E

14.9 km

31.2 N, 88.7 E 7.3 km

38.0 N, 338.8 E 11.6 km

Distance	4.5 km	2.9 km	4.6 km
Bulge R	4.5 km	1.8 km	4.6 km
Ratio	$0.6 \mathbf{R}$	$0.8 \mathbf{R}$	$0.6 \mathbf{R}$

Summary: Mars

- 3 similar-sized lobate ejecta craters, within a 10-degree band in the mid-latitudes, display an unusual bulge, western rim.
- 5 possible origins: pre-existing crater, oblique impact, ground-ice (GI), pre-existing topography, and oblique impact w/ Gl.
- Formed by same process

[^0]: After Ernst et al. (1995)

