Impact Crater Morphology

Craters on Earth

Wolf Creek, Australia

Meteor Crater, Arizona

Venus as a Planet

- Diameter = 12,104 km
- Density = 5.2 g/cm^3
- Rotation Period = 243 days (retrograde)
- Surface P = 92 x Earth's
- Ave. Surface T = 460°C
 = 733 K = 860° F
- Ave. Distance from Sun = 1.08 x 10⁸ km

Introduction: Venus

- Elevation, unimodal = -3.9 to 12 km
- Mostly flat plains with some topographic swells, volcanoes, dune fields, rift valleys, ~ 1000 impact craters.
- No Plate Tectonics!!!

From Freedman & Kaufmann III (2002)

- Surface = 500 m.y. old
 - Equilibrium Resurfacing Hypothesis
 - Global Catastrophe Hypothesis

Objectives: Venus

- To interpret morphology & evolution of impact craters in the BAT region.
- Impact craters used to study plume related features.
 - Regiones extending 1000's of km (Solomon et al., '91; Smrekar et al., '97)
 - Radiating graben-fissure systems 100's of km (Grosfils and Head, '94; Ernst et al., '03)
 - Coronae ave. D ~250 km (Stofan et al., '92)
- To assess thickness of parabolic deposits with crater Von Schuurman.

The Magellan Mission

- Launched: 1989
- Arrived: 1990
- Crashed: 1994
- Single instrument: SAR, altimeter, & radiometer
- Wavelength = 12.6 cm
- Pulse length = 26.5 microsec
- Frequency = 2.385 GHz
- 3 Cycles: 98% surface mapped
 - C1 left
 - C2 right
 - C3 left

Venus, sweet mystical star Earthlike, but hotter by far No use to peruse Unless you can use Synthetic-Aperture-Radar -- Anonymous

SAR images

- Slope (Ovda Regio)
 - Away elongated, shadow
 - Towards foreshortened, bright
- Roughness (Crater Aurelia)
 - Rough diffuse reflectors
- Reflectivity (Maxwell Montes)
 - Above 4 km high, reflectivity is common
 - chemical weathering

26% of impact craters on Venus have been modified: 158 T (~18%); 55 E (~6%) ; 19 TE (2%)

Analysis: Venus

- 38 impact craters
- Magellan radar images
 - F-MDIRs & C1-MDIRs 75 & 225 m/pixel, respectively
 - Detailed geologic maps
- Magellan Altimetry
 - Topography 3-D view
- Dip for craters and surrounding area

27.9

287.00

288.6

Pristine (Izenberg, Herrick, Schaber)

Images show a prominent radar-bright outflow feature to the south of this crater. The crater tilts to the south and the outflow apparently emanates from within the central peak area.

197.6

Uvaysi (2.3 N, 198.2 E, 38.0 km)

188.6

206.2

Parabola-associated crater Tectonized & Embayed Crater ejecta is strongly embayed on the WSW side, but it is not possible to identify episodes of individual flows.

Results: Topographic Swells

- Atla and Themis Regiones craters predominantly tectonized
 - Exception: Richards & Uvaysi multiple embayment
- Craters on Beta mostly embayed
- Presence of parabolic craters on Atla activity recent
- Atla contains higher concentration of modified craters than Beta
- Atla's craters dip away from rift

Results: *Radiating Fissure Systems*

- Grosfils & Head ('94): 163 large radial systems
- Ernst et al. ('03): Northern Beta Regio
 - 6 giant radiating systems -> 5 dike swarms

278.7

Results: *Radiating Fissure Systems*

- Hypothesis # 1 uplift
 - Truth and Nalkoswka neither tilts away from radiating center
 - Collapse of the systems more than recent uplift (West, Sanger)
- Hypothesis # 2 dikes
 - Little evidence of crater modification by volcanic or tectonic processes
 - Raisa TE on the youngest system
 - Central reservoir near surface unlikely or dikes never reach surface

West (26.1° N, 303.0° E, 28.0 km)

Embayed-only, but image reveals a slightly disturbed ejecta blanket. Note the radar-bright outflows to the E and SE opposite in direction to current dip.

Sanger (33.8 N, 288.6 E, 83.8 km)

Possibly tectonized and embayed. Clear halo crater according to Basilevsky and Head (2002) with outflows in the NW (< 250 Ma).

Conclusions: Venus

- Ongoing obliteration of impact craters, BAT area
- Uvaysi establishes the timing of activity there as recent (30-75 m.y)
- Atla is younger, more active than Beta
- Modified craters: 33% Atla vs. 23% Beta
 - On Atla E craters are negligible, T craters occur only at low elevations; 4 TE craters cluster near geoid high
 - Beta's modified craters are randomly distributed

Conclusions: Venus

- Radiating fissure systems have caused little modification of impact craters
 - New craters

Hypothesis # 2

 Dips of craters suggest collapse of the radiating systems (R3, R8)

Mars: The Red Planet

- Diameter = 6,794 km
- Density = 3.9 g/cm^3
- Rotation Period = 24:37:22 days
- Surface P = 0.1 x Earth's
- Mean Surface $T = -53^{\circ}C$
 - $= 220 \text{ K} = -63^{\circ} \text{ F}$
- Ave. Distance from Sun = 2.28 x 10⁸ km

Objectives: Mars

 To examine enigmatic deposits forming a bulge with 3 craters of similar size, midlatitudes

28.3 N, 116.7 E 14.9 km

31.2 N, 88.7 E 7.3 km

38.0 N, 338.8 E 11.6 km

Distance	4.5 km	2.9 km
Bulge R	4.5 km	1.8 km
Ratio	0.6 R	0.8 R

4.6	km
4.6	km
0.6	R

Summary: Mars

- 3 similar-sized lobate ejecta craters, within a 10-degree band in the mid-latitudes, display an unusual bulge, western rim.
- 5 possible origins: pre-existing crater, oblique impact, ground-ice (GI), pre-existing topography, and oblique impact w/ GI.
- Formed by same process