A SURFACE-WAVE INVESTIGATION OF THE RUPTURE MECHANISM OF THE
GOBI-ALTAI (DECEMBER 4, 1957) EARTHQUAKE*

EMILE A. OKAL

Seismological Laboratory, California Institute of Technology, Pasadena, Calif. 91125 (U.S.A.)

(Received March 15, 1976; accepted for publication March 19, 1976)

Long-period records of multiple Love waves from the 1957 earthquake in Mongolia (Mr = 8.0) at Pasadena are analysed and compared to synthetic seismograms, generated by the method of Kanamori. A fit in the time domain shows that the records are not consistent with the previous solution, achieved through a frequency-domain analysis of directivity by Ben-Menahem and Toksöz. The solution asked for a shorter rupture of 270 km at a velocity of 3.5 km/s. The focal parameters are constrained by updating all the reported first motion and are found to be: strike = 103°, dip = 53°, slip = 32°. A seismic moment of 1.8 x 10^28 dyn cm is obtained. These figures are also consistent with a time-domain analysis of Love waves at Palisades and Strasbourg, and of Rayleigh waves at Pasadena, with a directivity study of Love waves at Pasadena, and with static deformation and isoseismal data. A discussion is given of the relation between moment, magnitude and rupture area, and a comparison is made with other events in the same region: it is concluded that this earthquake does not exhibit an "intra-plate" behavior, but rather compares better with "inter-plate" events, such as the great Assam earthquake.

1. Introduction

At 03h37m45.0s TU, on December 4, 1957, a major earthquake (Mr = 8.0) occurred along the Bogdo fault in central Mongolia. The epicenter was subsequently computed at 45.3 ± 0.2°N by 99.3 ± 0.15°E (Florensov and Solonenko, 1963). Although this event, known as the Gobi-Altai earthquake, did little civilian damage, due to its location under desert mountain ranges (Fig. 1), it was soon recognized as one of the major earthquakes in recent times, and an extensive field investigation was conducted by a team of Russian and Mongolian scientists (Florensov and Solonenko, 1963).

Furthermore, in view of the recent advent of plate tectonics, this earthquake could be regarded as the largest recent expression of intra-plate seismicity. It is therefore challenging to thoroughly investigate its mechanism. The only such attempt had been made by Ben-Menahem and Toksöz (1962) (hereafter referred to as BMT62), who studied multiple Rayleigh waves Rs - Rg recorded at Pasadena. However, at the time, the theory of surface-wave excitation was not fully developed and their study was focused on an investigation of directivity in the frequency domain. Their results asked for a fault rupture of 560 km, striking N100°E, at a rupture velocity of 3.5 km/s. The development of long-period surface-wave synthetic seismograms (Kanamori, 1970a, b) allows a time-domain investigation of the rupture mechanism and warrants a complete reassessment of the focal and rupture process of the Gobi-Altai event.

In Section 2, we discuss the focal solution of the earthquake, before determining the rupture process in Section 3. A discussion of directivity effects is given in Section 4. A computation of the seismic moment is given in Section 5, and this figure is discussed with respect to general intra-plate tectonics.

* Contribution No. 2720, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
2. Focal process

The focal process of the Gobi-Altai earthquake has long been a challenge. At the time of the BMT62 paper, the solution could only be inferred from surface deformation data. Hodgson et al. (1962) noted a high degree of inconsistency among the first-motion reports. They proposed a mechanism shown on Fig. 2a, with strike (ϕ), dip (δ) and slip (λ) angles of respectively 125.5°, 55°, and 24.3°. Florensov and Solonenko (1963) show that their solution ($\phi = 107^\circ$, $\delta = 41^\circ$, $\lambda = 40^\circ$) is rather poorly constrained, the azimuths of the planes, for example, being allowed to vary 35° around the chosen values (Fig. 2b). They also report inconsistencies in first-motion data. In view of the location of the station PAS (its azimuth from the direction of the fault varies from 60 to 95° depending on the model), it is crucial to achieve a better solution, if one is to build synthetic seismograms. This is made possible by including mostly dilatational data from Indian stations (BOM, HYB, CCU and KOD), which were not used by Florensov and Solonenko, and mostly compressional data from central Asia (DSB, KIR, AND and LAH), which were not used by Hodgson et al.

Inclusion of these data points yields a better-constrained solution: $\phi = 103^\circ$, $\delta = 53^\circ$ and $\lambda = 32^\circ$, shown on Fig. 2c. The rather large number of inconsistencies, mostly from European stations, may be due to the fact that most European stations lie in the direction opposite to faulting, and therefore give rise to emergent records. The long-period Galitsin record at DBN clearly shows a compression on Z, and a SW first motion on the horizontal instruments. Similar records at FIR also agree, as do both short- and long-period records at STR. Records at UCC show a self-inconsistent (down, south, west) first motion. However, the shape of the signal is very similar to that at DBN (the two stations are only 150 km apart) and it is believed that the polarity of the Z instrument at UCC was wrong. This set of data clearly puts western Europe into a compressional quadrant. The data from India and central Asia constrain the solution to within a few degrees. It should be noted that the proposed solution, which represents a left-lateral strike-slip with a fair amount of
thrust (Fig. 2d), is consistent with the surface-rupture studies quoted from Florensov (1958) in BMT62. The solution is also basically consistent with the general pattern of Asian tectonics, as described by Molnar and Tapponnier (1975).

3. Rupture process from time-domain surface wave studies

Records used in this study were principally those obtained at PAS, by the high-pass "30–90" three-component seismometer (Press et al., 1958), and by the low-gain strainmeter. Additional Press-Ewing records from PAL and Galitsin records from STR were also used. Table I lists some parameters of the stations and records used in this study. The particular azimuthal location of PAS with respect to the fault elements is favorable to Love rather than Rayleigh waves.

3.1. Love waves at Pasadena

Records of the three components of the 30–90 instrument were digitised from 06h44m to 14h00m TU, and the horizontal ones were rotated into SH polarization. The phases G_3, G_4, and G_5 were isolated and
TABLE I
List of stations and records used in the study of the Gobi-Altai earthquake

<table>
<thead>
<tr>
<th>Code</th>
<th>Name and country</th>
<th>Distance from epicenter (°)</th>
<th>Azimuth from epicenter (°)</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAS</td>
<td>Pasadena, Calif.</td>
<td>93.71</td>
<td>30.23</td>
<td>Press-Ewing (N, E, Z) low-gain strainmeter (N, E)</td>
</tr>
<tr>
<td>PAL</td>
<td>Palisades, N.Y.</td>
<td>93.96</td>
<td>354.83</td>
<td>Press-Ewing (N, E, Z)</td>
</tr>
<tr>
<td>DBN</td>
<td>De Bilt, The Netherlands</td>
<td>58.21</td>
<td>313.7</td>
<td>Galitsin (N, E, Z)</td>
</tr>
<tr>
<td>FIR</td>
<td>Firenze, Italy</td>
<td>59.57</td>
<td>303.04</td>
<td>Galitsin (N, E)</td>
</tr>
<tr>
<td>UCC</td>
<td>Uccle, Belgium</td>
<td>59.37</td>
<td>312.83</td>
<td>Galitsin (N, E, Z)</td>
</tr>
<tr>
<td>STR</td>
<td>Strasbourg, France</td>
<td>58.32</td>
<td>309.24</td>
<td>Galitsin (N, E, Z)</td>
</tr>
</tbody>
</table>

used, varying from 200 to 560 km, this upper limit being the rupture length proposed by BMT62. A rupture velocity of 3.5 km/s, similar to that used in BMT62, was used throughout the study. A step-function type of source was chosen, and no attenuation of the source along the rupture was assumed. In Section 4, we will discuss part of this last hypothesis on the basis of some

equalised to a station distance of 90°. Components with periods lower than 60 s were at the same time removed. No attempt to process G_6 and G_7 was made, although these phases were readily identifiable on the records (Fig. 3). The computation of the synthetic seismograms followed the procedure described by Kanamori and Cipar (1975). Several lengths of rupture were

Fig. 3. Transverse (SH-polarized) trace of the Press-Ewing record at PAS.
directivity data. The azimuth of propagation of the faulting was taken to coincide with the trace of the fault plane (φ = 103°).

Synthetics for G₃, G₄ and G₅ are shown on Fig. 4, for fault lengths of 560 km (suggested by BMT62) and 270 km (which turned out to give the best fit to our data), and are compared with the observed traces. It is readily seen that a fault length of 560 km cannot account for the observed wave shapes: the frequency con-

Fig. 4. Observed and synthetic records of Love waves at PAS.
a. Synthetic seismograms for a 560-km rupture length.
b. Synthetic seismograms for a 270-km rupture length.
c. Observed signals. The 560-km G₄ synthetic has been shifted upwards to enhance clarity.

tent of the synthetic G₃ and G₅ is clearly different from that of the observed phases, and the shape of the synthetic G₄ exhibits a doublet, due to a rupture propagation backwards from the departing wave. On the other hand, a length of 270 km gives a most satisfactory fit to G₃, and also to G₅ and G₄, although the amplitude of G₄ remains somewhat too large.

Fig. 5. Observed and synthetic seismograms for the horizontal component of R₂ at PAS; (a)–(c) as in Fig. 4.

Fig. 6. Observed and synthetic seismograms for G₃ at PAL; (a)–(c) as in Fig. 4.

Fig. 7. Observed and synthetic seismograms for G₂ at STR; (a)–(c) as in Fig. 4.
3.2. Rayleigh waves at Pasadena

Synthetics were computed for the phase R₃ at PAS. It was found that the length of the rupture has a rather limited influence on its waveshape and that R₃ cannot help in discriminating between various rupture lengths. The horizontal component of the phase R₂, recorded on the low-gain strain instrument, was also used: this system is equivalent to a mechanical seismometer with Tₛ = 90 s. Fig. 5 compares the observed wave, filtered at T = 50 s, with synthetics for both 270 and 560 km. As can easily be seen, the shape of R₂ at PAS is inconsistent with the 560-km fault length. This is important, because Rayleigh waves were the only data used in BMT62.

3.3. Other records

Fig. 6 shows a similar comparison between observed and synthetic seismograms for G₃ at PAL. The other records obtained were those at DBN, FIR, UCC and STR; these stations are located at an azimuth extremely unfavorable to Rayleigh waves, and, indeed, those are not easily observed on the records. The best record was that of G₂ at Strasbourg (Fig. 7). Unfortunately, it does not help discriminate between rupture lengths, because of station azimuth. This point will be discussed in the next section.

As a partial conclusion to this section, it can be stated that most of the records of both G and R waves are incompatible with a rupture length of 560 km, whereas all agree with a shorter length of 270 km at 3.5 km/s.

4. Frequency-domain investigation

Our results conflict with those from BMT62, which were obtained in the frequency domain. In order to examine the cause of this discrepancy, we analysed our data in the frequency domain, and made a directivity plot similar to that of BMT62, for G₃/G₄ at PAS. The theoretical aspects of the problem of the directivity function of a moving source have been described by Ben-Menahem (1961), who showed that a spectral component of frequency f, leaving the source at an angle θ from the rupture direction, is attenuated by an amount:

\[
D(θ) = \left| \frac{\pi f}{c} \left(\frac{c}{v} - \cos θ \right) \right| \left| \frac{\pi f}{c} \left(\frac{c}{v} - \cos θ \right) \right|
\]

where l is the rupture length, v the rupture velocity and c the surface-wave phase velocity at frequency f. For two successive multiple surface waves, such as G₃ and G₄, at the same station, equalised to an identical distance, the spectral ratio is then given by:

\[
\frac{D(θ)}{D(θ + π)} = \left| \frac{\frac{c}{v} + \cos θ}{\frac{c}{v} - \cos θ} \right| \left| \frac{\frac{c}{v} + \cos θ}{\frac{c}{v} + \cos θ} \right|
\]

The experimental value of this ratio for G₃/G₄ at PAS is shown on Fig. 8 and is compared with theoretical models for both fault lengths. Should the fault be 560 km long, a peak in the directivity function would be expected around 200 s, for which there is no evidence in the data. On the other hand, a reasonably good agreement is found with the theoretical spectrum ratio for 270 km. This indeed is a conclusion similar to that in BMT62, in which the authors noticed the disappearance of the expected first Rayleigh wave directivity peak. Although the gain of the instrument is rather low at these frequencies, both the present investigation and Figs. 6 and 7 in BMT62 show that the amplitude of the spectrum of R₃, R₄, G₃ and G₄ is indeed maximum around 200 s. It is therefore not possible to account for the non-existence of the 200-s peak through errors introduced by the instruments.

Similarly, Fig. 9 shows the spectrum of the R₂ record at PAS, on the long-period strain instrument. There is no evidence for the hole at T = 195 s required by the 560-km solution. The hole for 270 km falls in a rather rugged portion of the spectrum, for which no definite comment can be made. In the case of stations lying close to the azimuth opposite to the fault, such as most of the European stations (see Table I), eq. 1 shows easily that even-order waves, leaving the source in the direction of rupture, will be affected by directivity only in the higher-frequency part of their spectrum. The only odd-order wave record of good quality from Europe was that of G₁ at STR. However, its Fourier spectrum is rather rugged and does not indicate any definite directivity effect.

It is thus apparent that in the frequency domain,
the analysis of directivity effects on Love and Rayleigh waves is not always a very powerful method of investigation of rupture mechanism. Difficulties in using this method were originally pointed out by Aki (1966). However, even in the Fourier space, most of the results from this study do agree better with the shorter (270 km) length of the fault rather than with the longer (560 km) length suggested by BMT62. We were not able to find any evidence for the fundamental hole expected around 200 s in G2n or R2n, in a 560-km-length model. We would also like to point out that BMT62 used a data set of 2,160 s, which they extended to 20,000 s, by adding zeroes. Therefore, their interval of sampling in the frequency domain cannot be shorter than 4.6 \cdot 10^{-4} \text{ Hz} (= 2.160^{-1} \text{ s}^{-1}) , and any feature of their spectra not extending over such an interval has no real physical meaning. It should be noted that many of the spikes in Fig. 11 of BMT62 do not meet this criterion. Our analysis used a fast Fourier transform (FFT) over data samples of 2,048 s, and no substantial number of zeroes were added. It therefore appears that the first peak of the directivity function, which Ben-Menahem and Toksöz identified as the No. 2-harmonic for a 560-km rupture, is in fact the fundamental for a 270-km fault.

As a conclusion to this section, it should be noted that the directivity plot on Fig. 8 clearly shows strong spikes, extending over three orders of magnitude. This restricts the rupture process and helps reject both a bilateral fault and an attenuating source function, as was discussed in BMT62. Also, the aftershock pattern does not suggest a bilateral faulting. However, there does remain a trade-off between velocity of rupture and length of fault, which can be resolved neither in frequency nor in time domain. The discussion of some static data will put some further constraints on the possible solution.

5. Seismic moment and discussion

The comparison of amplitudes between synthetic and observed seismograms allows a computation of the
seismic moment of the earthquake. G_3 records at PAS yield a value of $1.8 \cdot 10^{28}$ dyne cm; R_3 at PAS yields $1.4 \cdot 10^{28}$ dyne cm; records at PAL ask for $2.3 \cdot 10^{28}$ dyne cm, although an accurate value of the gain of the instrument at this time was not available; the G_3 record at STR yields $1.4 \cdot 10^{28}$ dyne cm. A reasonable value is therefore $(1.8 \pm 0.4) \cdot 10^{28}$ dyne cm. It is interesting to compare this figure with the static data reported in Florensov and Solonenko (1963). These authors report average static dislocations along the fault on the order of 8 m. The depth of the hypocenter is estimated by them at 16 km. Continuous surface breakage asks for a vertical extent of at least 16 km, but probably not greater than 40 km. The width of the fault is then 20–50 km, due to the inclination of the fault plane, and the static moment $M = \mu SD$ is found to be $(1.3–3.2) \cdot 10^{28}$ dyne cm, for a fault length of 270 km, in agreement with the long-period seismic data.

Fig. 10 is adapted from Florensov and Solonenko (1963) (their fig. 89, p. 251 of the English translation). It shows the distribution of the major aftershocks of the earthquake, and the line of isoseismic degree 5. Superimposed on it, we have plotted the 270-km and the 560-km faults. As can easily be seen, the 560-km fault would go well out of the isoseismic line. Although the data about this line were obtained in desert land and no continuation of it is available into China, its significance is not to be underestimated, in view of the extensive field work reported by Florensov and Solonenko (1963). On the same figure, it is easy to see that the reformation of the line of about 300 km along the fault. Again, this is an indi-

TABLE II

Source parameters of Asian earthquakes used in the present study

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Type</th>
<th>Epicenter</th>
<th>M_s</th>
<th>M_0 (dyne cm)</th>
<th>Apparent stress (bar)</th>
<th>Stress drop (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gobi-Altai</td>
<td>4 Dec. 1957</td>
<td>strike-slip and thrust</td>
<td>45.21 99.24</td>
<td>8.0</td>
<td>$1.8 \cdot 10^{28}$</td>
<td>10.5 26</td>
<td></td>
</tr>
<tr>
<td>Khangai</td>
<td>5 Jan. 1967</td>
<td>strike-slip</td>
<td>48.24 102.90</td>
<td>7.35</td>
<td>$3.2 \cdot 10^{26}$</td>
<td>63</td>
<td>–</td>
</tr>
<tr>
<td>Urumchi</td>
<td>13 Nov. 1965</td>
<td>thrust</td>
<td>43.85 87.74</td>
<td>6.7</td>
<td>$8.3 \cdot 10^{25}$</td>
<td>26</td>
<td>–</td>
</tr>
<tr>
<td>Assam*</td>
<td>15 Aug. 1965</td>
<td>thrust</td>
<td>28.30 96.70</td>
<td>8.6</td>
<td>$2.5 \cdot 10^{29}$</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

* Data from Ben-Menahem et al. (1974).
cation supporting the 270-km hypothesis.

The magnitude of the Gobi-Altai earthquake has been computed by a number of agencies. The Bulletin of the Bureau Central International de Sismologie (Strasbourg) (1958) summarizes the surface-wave magnitudes reported by various observatories. A mean value of $M_s = 8.04 \pm 0.45$ results. A redetermination from 20 s surface waves at PAS yields 7.98. A value of 8.0 has therefore been adopted here. It then becomes possible to compare the parameters of this earthquake with those of others, in the way of the study by Kanamori and Anderson (1975). The preceding sections suggest the following values: magnitude, $M_s = 8.0$; moment, $M_o = 1.8 \cdot 10^{38}$ dyn cm; rupture surface, $S = 10,000$ km².

From these figures, it is possible to compute a stress drop $\Delta \sigma = 26$ bar, and an apparent stress $\tau \sigma = 10.5$ bar. Although this last figure is not very accurate (and could possibly vary from 3 to 30 bar), due to uncertainties in the magnitude-energy relation, it is still way under the average "intra-plate" apparent stress of 60 bar, determined by Kanamori and Anderson (1975). In this respect, the Gobi-Altai earthquake plots among the inter-plate rather than intra-plate family on fig. 4 of Kanamori and Anderson's paper. Its next neighbors on the plot are the 1968 Tokachi-Oki, 1969 Kurile, 1970 Peru, 1944 Tonankai and 1946 Nankaido events, all major interplate earthquakes. The closest intraplate events are the 1952 Kern County and 1969 Portuguese earthquakes, which have much higher apparent stresses.

A similar result may be obtained from the stress drop $\Delta \sigma$. It should be emphasized that the relation between M_o and S, used in the determination of the stress drop, holds even for very large earthquakes, as pointed out by Kanamori and Anderson. On fig. 2 of their paper, the Gobi-Altai earthquake is comparable to the 1952 and 1968 Tokachi-Oki, 1966 Peru, 1969 Kurile, and 1944 Tonankai events. Again, intraplate events of comparable importance exhibit larger stress drops, and there seems to exist a major difference in terms of source parameters between the Gobi-Altai earthquake and other intra-plate events. In order to investigate this point further, we studied two other large events, which occurred in Mongolia and Sin-Kiang: the Urumchi earthquake of November 13, 1965, and the Khangai earthquake of January 5, 1967 (see Fig. 1). The parameters of these events are listed on Table II. Purposely, they were chosen so that the seismotectonics involved in them are different from that of the Gobi-Altai earthquake: the Urumchi earthquake is a thrust event between the Tien-Shan fold belt and the Dzungarian block; the Khangai event is a pure strike-slip presumably along a NS fault (Molnar and Tapponnier, 1975), and possibly linked with the Lake Baikal rift system (Florensov, 1968). We also include in Table II the results of Ben-Menahem et al.'s (1974) study of the great Assam earthquake of August 15, 1950. Unfortunately, no data on fault dimensions are available for the Khangai and Urumchi events, and only an apparent stress study can be made. Nevertheless, as can be seen, only the Khangai event clearly qualifies for intra-plate behavior. The Urumchi earthquake has intermediate properties, and the Gobi-Altai event joins the Assam earthquake into the inter-plate family.

The interpretation of this feature is probably that the Bogdo fault, on which the Gobi-Altai event took place, is a major expression of present Eurasian tectonism, along which a major left-lateral slip of China towards the Pacific Ocean is taking place, as a result of the Himalayan collision, as proposed by Molnar et al. (1973) and Molnar and Tapponnier (1975), and possibly giving birth to a new "Chinese" plate.

This indeed raises the question whether there can exist any major ($M_s > 8.0$) intra-plate event, or whether such an event is large enough as to make the two sides of its fault separate entities on a world-wide scale. A very challenging project in this respect would be the investigation of the huge 1905 Mongolian events ($M_s = 8.3$ and 8.7 (?)) along the Bolam fault. This might be done in the future, although the quality of the records involved is poor and a lot of uncertainty reigns over the characteristics of some of the instruments used at that time (Okal, 1976).

6. Conclusion

We have shown that a time-domain analysis of surface waves from the Gobi-Altai earthquake suggests a fault length of 270 km, which is much shorter than previously determined. Results in the frequency domain suggest the same. The focal parameters ($M_o = 1.8 \cdot 10^{38}$ dyn cm; $M_s = 8.0$) obtained from this study indicate that this earthquake has the characteristics of an inter-plate event, this being compatible with the present understanding of Chinese tectonics.
Acknowledgments

I thank Prof. Hiroo Kanamori for the use of his synthetic surface-wave programs, and for many discussions. I am grateful to Prof. C.R. Allen, editor of the English translation of Florensov and Solonenko (1963), who gave me permission to adapt figs. 197 and 89 into Figs. 2b and 10 of the present paper. Seismic stations listed in Table I kindly provided originals or copies of the records used. This work was supported by NASA Contract NGL 05-002-069 and National Science Foundation Grant No. EAR 74-22489.

References

