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SUMMARY

A method 10 determine the depth and mechanism of subevents in earthquakes with complex
rupture is developed. Complex body-waves are deconvolved using a damped Lanczos
inversion 1o retrieve the source time function. Some constraints on the mechanism and depth
of the first subevent are assumed, though aot required. The data set is deconvoived using the
Green's Tunction for the first subevent to obtain a best-fitting source time functjon. This
source tfime function is then windowed in time around the first puise and the corresponding
synthetic seismogram is subtracted from the data. This process is repeated on residual data to
determine mechanisms and depths of subsequent subevents.

This method is applied to the 1978 December 6 Kuril Islands earthquake, a complex event
which ruptured vertically from 160 to 220 km in depth, and represents tearing of the Pacific
plate as it subducts beneath the Kuril and Honshu arcs. Using long-period WWSSN data, we
found three main subevents with the mechanism ¢ = 150°, § = 80°, and A =20° at depths of
120, 165, and 210 km. In this particular case one nodal plane is very well constrained and
there is some a priori evidence for significant vertical ruptare,
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I INTRODUCTION

Large carthquakes with ruptures of long duration involving
large fault areas present a chatlenge in the determination of
the defails of the rupture. For large subduction zone events,
rupture over a sigaificant depth extent can occasionally
result in substantial discrepancies between centroid depths
determined from long-period surface waves and depths
determined from first arrival tmes (Giardini  1984;
Romanowicz & Guillemant 1984), the latter being
presumably related to the depth of initial rupture. Inversion
of long-period body-waves for the source time function is
important for understanding the complexity of the rupture,
the history of moment relesse and the spatiotemporal
distribution of asperities or barriers (Kikuchi & Kanamori
1982; Ruff & Kanamori 1983; Nébalek 1984; Christensen &
Ruff 1985).

A number of similar methods have been used for these
purposes. One, due to Kikuchi & Kanamori (1982), builds
up the source time function ileratively as a series of
weighted pulses temporally located at the maximum of the
cross-corretation between the residual seismogram and a
synthetic wavelet for a ramp function. The sequence of
pulses obtained after a given number of iterations is then
convolved with the unit ramp to give the final source time
tunction. This method has been used with considerable
success in the retrieval of source parameters and source time

history (Stein & Wiens 1986). However, these authors point
aut that its depth estimates become inaccurate for up-dip or
down-dip rupture extending over a wide depth range. In
addition, when inverting for complex source time functions
lasting several tens of seconds, this method can lead to static
offsefs in the moment raie function, making it difficult to
resoive the true source time function. A second method
(Ruff & Kanamori 1983) s based on the least-squares
inversion formalism of Lanczos {1961}, In the Appendix, we
discuss the relative performance of the two methods, and
show that the least-squares method is theoretically more
accurate, a feature Decoming significant when trying to solve
for pulses separated by short time intervals, or with
substantial duration. We confirm this through an experiment
on synthetics. An extension of the Kikuchi & Kanamort
method solves for the source pulses both temporally and
spatially on a fault of piven geometry and dimensions
{(Kikuchi & Fukao 1985).

The above techniques usually assume a constant focal
mechanism and depth. Similarly, in most moment tensor
inversions of body waves {(Stump & Johnson 1977;
Dziewonski, Chou & Woodhouse 1981; Sipkin 1982), the
time behaviour of all moment fensor components is usually
taken as identical, resufting in a focal geometry invariant
with time. Such assumptions may be inappropriate for large
earthquakes with vertical rupture.

In a recent study, Kim & Wallace (1986) developed a
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moment tensor inversion technigue allowing differing time
histories for the various components, which has been used
to successfully model two complex Iranian earthquakes
(Slevin & Wallace 1986). This method can occasionally lead
to large non-double couple components.

In this paper, we develop a method for applying a
damped Lanczos inversion to pure double couple
earthquake sources of varying depth and geometry. Using
this method for the 1978 December 6 Kuril Islands
earthquake, we suggest an extended (=9 km) vertical
rupture.

2 OQUTLINE OF THE LEAST SQUARES
METHOD

A teleseismic body wave signal s(r) can be represented as
the convolution s{t}=m(f)*e(t)*i{f), where mi{r) is the
source time function, e(f) is the impulse response of the
Earth, a combination of its transfer function and of the
source geometry, and ((r) is the instrument response.
Grouping e(t) and i{t) together, s(1) = g(/)*m{1), where g{1)
is the Green's function for a particular mechanism and
depth. The convolution, in vector-matrix form is 5, = G,m,
where G is the Green's function matrix.

We use a damped Lanczos inversion to solve for the
source time function m in the least-sguares sense {Lanczos
1961; Ruff & Kanamori 1983):

m = G*s, (1)
with
G* = (GTWG + dI) 'G™W, ) (2)

where W = i 1/var (s}] weights the inverted data set, 4 is the
damping parameter and ! is the identity matriz. This
formalism is not restricted to a single station and can
simultaneously invert a multiple station data set.

The application of the Lanczos inversion to compiex body
waves, which we will call the Least-squares method, is
straightforward. At each step, the depth and fault geometry
of an individual subevent in the source time function is
chosen so as to miminize the squared error between residual
data and synthetics. The synthetic seismogram for that
subevent is then subtracted from the residual seismogram,
and the process iterated for the next subevent. This
procedure is stopped when the residual data set is reduced
to the noise level in amplitude. The crucial difference
between this approach and that of Kikuchi & Kanameori is
that subevents are freated sequentially in time, rather than
in relation to their moment release amplitude, thus
providing stricter control on the time evolution of the focal
geometry and depth.

3 APPLICATION OF METHOD TO
SYNTHETIC DATA

In order to test this method, we generated synthetic P-wave
data for a complex rupture consisting of two subevents with
different mechanisms and depths. Fig. 1 shows the source
time function and mechanisims used. The mechanism for the
first pulse has a strike ¢ =0°, a dipd =45°, and a slip
A=90", at a depth of 120km. The second puilse has the
same sirike and dip but with A = 135° and a depth of 160 km.
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Figure 1. Source time function and mechanism of each pulse for
synthetic data used as a test of the Jeast-squares method. For pulse
1, ¢ =0° 6 =45 and 1 =90" For pulse 2, the strike and dip are
the same but A= 135" Fault parameter convention is that of
Kanamori & Cipar {1974}, The focations of test stations A and B on
focal mechanism plots arc shown.

As a first step, we use the correct mechanism for the first
pulse, and, assuming no change in mechanism during tie
rupture, deconvolve the data set for the whole source time
function. {The mechanism of the first pulse controls the
polarities of teleseismic first motions and, as such, can be
expected to be known relatively accurately.) This procedure
is carried out over a range of depths; for each depth, the
synthetic seismogram c¢=Gm, with m given by (1}, and
squared residual is — ¢|* are computed. The depth yielding
the minimum residual is taken as the depth of the first pulse.
Fig. 2(a) shows that this procedure retrieves it correctly at
120 km, although a strong local minimum exists around
200 km. The second minimum at 200 km while having nearly
as low a residual value as that at 120 km has a significantly
poorer source time function with a much larger amount of
the curve having a negative moment rate. This wolld imply
a succession of back-and-forth motions along the {ault
plane. Therefore the depth of 120 km is the minimum which
gives a physically acceptable result for the first pulse. Fig,
3(a) shows the source time function computed for 120 km.
Most noticeable is the development of a spurious third pulse
(indicated by a question mark) 40s into the source time
function. If the inversion were stopped at this stage, an
erroneous picture of the source process would emerge, since
the total source duration would be taken as 455, rather than
the correct 20 s, Inferences about the extent and structure of
the fauit zone, in particular regarding the existence of
asperities, could be incorrect.
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Figure 2. Plots of squared erior versus varying parameter Loy test event. In (a), the seismograms are deconveolved over a range of depths using
the mechanism for the first pulse. In (b)), the residual is deconvoived using the mechanism for the first puise for the whole source time function
{sciid line), and for a time-windowed source time function of 0~15s (dashed line}. in (c), the correct slip is found for the second pulse using

the corcect depth of 16l km obtained from (b}

second pulse, See 1ext for detatis.
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Figure 3. Steps m recovering the correct source time function for the test event. In (a}, the seismograms are deconvolved for the mechanism
and depth of the first pulse (shaded). Note the spurious third pulse {question mark}, In (b), the residual data are deconvoived for the
mechanism and depth of the second pulse. Tn (c), the first puise in the source time function (2) and the whole souzrce time function in (b) are
summed to give the final source tme function and the final synthetics. See text for details.
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To allow for possible changes of focal parameters
{geometry or depth) in the later pulses, we assume that the
results of this first pass apply only to the first pulse [shaded
on Fig. 3(a)]. We then compute a synthetic ¢'™ = Gm'V,
where m' is the time function truncated after the first pulse
(in this case 7s) and obtain a residual signal s =5 — ¢/,
which can be interpreted as the contribution to the
seismogram of all later pulses. In this notation, superscripts
indicate the order of iteration; the superscript of order zero
is dropped.

The second step is the estimation of the depth and
mechanism for the second subevent. In principle, we seek
the set of parameters in 2 4-1) space (¢, 8, A; and depth k),
which best fit the residual seismogram s'*?. In practice, we
experimented with several strategies, and found that the
source depth is the most robust parameter, which we
therefore determine first. This is due to the fact that in the
synthetic body wavetrain consisting of P, pP and sP, the
depth controls the time intervals between the three arrivals,
and thus affects the cross-correlation GYWs'™™ more
significantly than does the geometry (¢, 8, ), which
controls the relative amplitude of the contributing rays
(Stein & Wiens 1986). If a station were nodal for any of the
later subevents the amplitudes of the direct (P) phase would
be zero, This could cause a problem if only one station were
used. Since we invert multiple stations simultaneously this
potential problem can be averted.

The solid line in Fig. 2(b) shows the residual for the
second iteration as a function of depth, using the geometry
of the first subevent, This plot has twe minima, one
corresponding to the depth of the second pulse (160 km).
The other one at the depth of the first pulse is a leftover
artefact of the spurious pulse in the first iteration, which
disappears if the synthetic ¢ is computed by truncating the
time function m™® resulting from the second inversion after
15s. The corresponding residual versus depth for this case
{the dashed line in Fig. 2(b)], exhibits a singic minimum at
the correct depth of the second pulse. By truncating the
time function after 15s, the residuals for depths greater
and lesser than 160 km show a substantial increase since
these depths require spurious pulses later in the source time
function.

Similarly, Fig, 2(c) shows the fit of the 2nd iteration as a
function of slip angle, for the correct depth of 160 km. This
plot has a minimum at the correct slip angle, 135°, and also
illustrates that the data set is much less sensitive to slip than
to depth. Only grossly wrong mechanisms, resulting for
example in a reversal of the polarity of the rays, are clearly
unacceptabie.

Figure 2(d}, the analogue of Fig. 2(b) with the correct
geometry for the second pulse, confirms the correct depth of
the 2nd subevent (160 km).

Figure 3(b) shows the source time function resulting from
deconvolving the residual data using the correct mechanism
and depth of the second pulse.

After the second iteration the source fime function shows
no mere subevents occurring later in time after the 2nd
ptlse and the residual seismograms do not have a significant
amplitude. At this point the iterative search is stopped. Fig.
3{c) shows the final source time function. Comparison with
Fig. 1 shows that jn addition to the variation of focal
geometry and depth, the time and amplitude history of the

source are satisfactorily retrieved. The spurious pulse in Fig.
3(a) has disappeared.

4 AFPLICATION TO THE 1978 DECEMBER
6, KURIL ISLANDS EARTHQUAKE

This large intermediate-depth earthquake (m, =6.3, Mg =
7.1} is particalarly interesting since it is located at the
junction of the Kuril and Honshu arcs (Fig. 4), where a
change in the dip angle of the subduction causes a
contortion or tearing of the plate (Isacks & Molnar- 1971;
Sasatani 1976). Comparable events may have occusred at
the same location in 1907, 1924, 1945, and 1957. Several
authors have studied this event with substantially varying
results, in particular regarding its depth (Malgrange & Okal
1983 Silver & Jordan 1983; Romanowicz & Guillemant
1984; Giardint 1984; Kasahara & Sasatani 1985). The
centroids f{ound by inversion of ultra-long-period surface
waves [176km (Giardini 1984); 170km (Romanowicz &
Guillemant 1984)], arc significantly deeper than the first
maotion hypocenters reported by the ISC (118 km) and NEIS
{91 km). These discrepancies suggest a large vertical exten|
for the rupture. The aftershock distribution for this event
also supports this concept since it extends vertically from
100 to 220km (Fig. 5). A complex earthquake with three
separate subevents extending over 70s was found by
Malgrange & Okal (1%83) assuming constant depth and
mechanisim using the Kikuchi & Kanamori (1982) method.

Focal mechanism

Figure 6 shows the P-wave first motion mechanism which we
determined for this event. All first motions plotted on this
figure were read as part of this study. The NNW--S5F-
trending plane is very well constrained. The aftershock
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Figure 4. Location of the J978 December 6. Kuile event (star) and
the WWSSN stations used in this study {dots).
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distribution suggests that this is the fault piane, which can be
interpreted as the shear surface between the two slabs (see
Fig. 5). On the other hand, the slip angle on this plane
cannot be coopstrained by frst motions aione. The
mechanism shown on Fig. 6 results from our body-wave
deconvotution,

Body-wave deconvolution

To apply the least-squares methed to P-waves from this
carthquiake, we selected the four stations shown on Fig. 4,
for which high-quality WWSSN data were available. Alf
fowr stations were simultancously deconvolved using 1405 of
data to obtain 160s of source time function.

'The residual curves for each step are shown in Fig. 7 with
the final results shown in Fig. 8 The range of trial source
depths was taken from 100 to 220 km as suggested by the
aftershock distribution. The depth of the first subevent was
found st 120 km, in agreement with the 1SC depth. The data
were then deconvolved at 120 kas to determine the best slip
angle on the constrained fault plane (¢ = 150°, & = 8(°),
The slip angle minimizing the residual is A =20° and the
resulting mechanisin is shown in Fig. o,

The process was iterated further as described in Section 3.
The final source time function has three or four major
subevents with an increase in depth between cach subevent.
The first one at 120 km, is well defined and has a duration of
approximately 15s. The second one is much larger; it occurs
at 165 km and is over 20 in duration. The final pari of the
source time function, beyond 43 s, gave an error minimum
at a depth of 210 km. The complex structure of the second
subevent suggests that it may itself be splif into several
sources, When testing this possibility, we could not resolve a
depth difference between its two parts, and thus treat it as a
single subevent,

No change in focal mechanism between subevents was
found to be resolvable by this data set. The resulting

mechanism (A = 20°) compares favourably with those of
Giardini {1984) (¢ = 322°, 4 =85°, A= -34°), Romanowicz
& Guillemant (1984} (¢ =338°, & =86° A=-15%, and
Kasahara & Sasatani {1985} (¢ = 150°, & =80°, 1 = 4iy°),

We obtained seismic moments of 1.1, 2.0, and
2.3 % 1077 dyne-cm  for cach subevent, for a totai of
(5.4 £ 0.5) x 10°” dyne-cm. This is substantially higher than
the value of 2.5 x 10°7 dyne-cot determined by Kasahara &
Sasatani (1985) but well within the range of the CMT values
{(4x 1077, 3.6 x 10°7, and 6.3 x 10* dyne-cm) determined by
Giardini (1984}, Silver & Jordan {1983), and Romanowicz &
Guillemant (1984), respectively. The centroid of our three
pulses is found at 175km, in agreement with centroids
determined from surface waves. Qur value is only
approximate since our choice of damping parameter
(d+0.01) can affect the final moment. Lesser damping
increases the moment by allowing the source time function
Lo be more ‘jagged” and improves the fit between synthetics
apd data. Greater damping lowers the moment by
smoothing the source time function and increases the
squared error between the synthetic seismograms and the
data.

Tectonic implications

The variation in depth during the source process of the 1978
Kuril event suggests that the nodal plane (¢ .= 150°, & = 80°)
was the fault plane. The direction of rupture inferred from
the skip angle {4 =20 is generally consistent with the
tearing motion of the plate at the subduction corner [Fig.
6(b)]. Fig. 6(c) shows that the dips of 40° beneath the Sendai
ar¢ and 50° beneath the Kuril arc call for a slip angle of 45°,

Finally, for this particular geometry involving shear
between two subduction arces, our study suggests the
existence of a fault plane along which stress release takes
piace In & series of jagged pulses, which may correspend to
regions of stronger coupling (possibly ‘asperities’), in a
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Figure 6. (a} P-wave first motion focal mechanism plot. Fitled circles indicate compressional and open circles indicate dilatational first motions.
(b) Sketch of tectonic interpretation of event, (¢} Vector diagram showing expected slip angle (A = 45°) between the Sendai slab (dip = 40°) and

the Kuril slab (dip = 50°).

fashion not significantly different from that documented for
shallow events. The vertical propagation velocities between
subevents (2-3km s~} are within the range of documented
values for shallower ruptures.

5 CONCLUSIONS

We have presented a method for determining the depth and
mechanism changes between subevents in complex events,
The determination of the depth and mechanism of
successive subevents is done by simultaneously inverting
multiple station seismograms for the source time function
and then, at each iteration, subtracting the synthetic
seismograms for that subevent at the depth which gives a
minimum error. Tests with synthetic data show that this
method retrieves the depth correctly for a secondary

subevent even with large errors in the focal mechanism for
that subevent.

We applied this method to the 1978 December 6, Kuril
Islands event, and obtained results which agree well with
ISC and moment tensor inversion depths. The de;;ths of the
subevents suggest that the shallow ISC hypocentre
represents the first pulse in the source time function. The
much greater depths obtained from ultra-long-period surface
waves and long-period body waves are explained by the
deeper pulses. A comparison of our final source time
function with that of Malgrange & Okat (1983) shows that
our source time function has significant amplitude to
approximately 90 s while that of Malgrange & Okal extends
to over 120 for some stations and the times of their second
and third pulses are progressively later in time, This would
be expected with a fixed depth of 120km for the whole
source time function.
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APPENDIX: COMPARISON BETWEEN
LEAST-SQUARES AND KIKUCHI &
KANAMORIY (1282) METHODS

In this appendix, we evaluate critically the relative
performance of the body-wave inversion method of Kikuchi
& Kanamori (1982} and of the least-squares method,

Both methods attempt to solve for m in s = Gm, wherem .
is the sequence of weighted pulses giving the scurce function
when convolved with a unit ramp, G is the Green’s function
matrix, and s the seismogram. In this appendix the Green's
function, €, for the least-squares method has been
convolved with a unit ramp to make it the same as the
Green's function of Kikuchi & Kanamori.

The undamped Lanczos inversion uses the weli-known
least-squares equation

m,,, = (GTG) 'G's. (A1)

The Kikuchi & Kanamori deconvolution, rather than
solve for the source time function in a single computation,
builds it iteratively. The cross-covariance, G's, between the
seismogram and a synthetic for 2 ramp function is formed,
and its fargest component retained; let " be the time at the
corresponding point in the time series. The first pulse is then
given by m = mWe™ where e is the unit vector
consisting of a singfe pulse of unit amplitude at time ™7,
and the amplitude m'" of the pulse is given by
TG

(A.2)

the matrix form of Kikuchi & Kanamori's {1982} equation
(12). The residual seismogram is then formed by
subtraction:

§V=g- Gm (A.3)

and the process iterated. Because {(A.2) has the properties
of a projector, it is easy to verify that G"s'¥ is orthogonal to
e and thus m™® = m‘Pe® is built at a time 1@ %/, The
final Kikuchi & Kanamori solution is

r
mil) = E metd

1

(A4

where [ is the total number of iterations performed,

In order to illustrate the relative performance of the two
methods, we study theoretically the inversion of ‘synthetic
data’, i.e. we assume that the signal s consists of a synthetic
due to two pulses of amplitudes a; and «, (with &, > a5), at
timeS t‘ and {2: '
s=Glae' + aye'?. (AL5)

In the absence of any noise in the signal, the least-squares

method retrieves the exact source:

m;,, ={(G'G)'GTs = a0 + @ (A.6)
On the other hand, the Kikuchi & Kanamori method

computes

GTs= o, G Ge™W + 0, GTGe™, (A7)
The largest component of this vector can depend on the
characteristics of the matrix GG, and may not always be
along e™. However, even if the time ¢, of the frst pulse is
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Figure A.1. Comparisen of the performance of the least-squares and Kikuchi & Kanamori methods studied in the case of synthetic data. In all
cases, we invert synthetic seismograms obtained from a source consisling of two pulses separated by a time by 8¢ varying from 405 (top) to 2
(bottom). {a): Result of least-squares method, Note that the second pulse is retrieved with correct amplitude and time shift in all cases. (b}
Result of four Kikuchi & Kanamori itertions. Note poor resolution for & =2 and 3s. {¢}: Result of eight iterations, Note generally poor

resolution of second pulse, and of relative ampiitudes,

correctly obtained, this algorithm fails to directly retrieve its
correct amplitude, but rather yields:

e 1GY ¢ G Ge®

My = =ayt @y TR
e TG Ge

TG (A-8)

and if the second pulse is retrieved through iteration 2 at the
correct time {,, its amplitude is given as

(AT ET a2
"G Gelt| } (A.9)

[ePTGTGe D[ DTGTGe™]

In addition, the times at which the vector G's is maximum
may, under certain conditions, be improperly restored. The
situation becomes increasingly complex if the real source Is
composed of a large number of pulses.

While it can be shown that the subsequent iterations of
the method can correct the values of m; and m,, the
convergence of this correction is controlled by the
off-diagonal terms of the matrix G¥G. In practice, this
means that the Kikuchi & Kanamori method should work
well and fast if the source contains several well-separated
puises, but is not adequate if the separation between pulses
is short or if the pulses are of long duration.

g = 052{1"‘

This theoretical result is upheld in the experiment shown
in Fig. Al we invert ‘synthetic data’ obtained at two
stations from a 45%thrust fault source consisting of two
puises separated by a variable tme interval 6 The
amplitude of the second pulse is half that of the first one.
The duration of the pulses is 3 5, the instrument involved is a
WWSSN 15-100, so that the characteristic duration of the
Green's function response is ~20s. The various lines in
figures correspond to different 8¢, from 405 at top to 25 at
the bottom. In all cases, the least-squares method {a)
extracts both pulses with an acceptable time and amplitude
relationship; even in the case of the shortest time
separation, a bulge is clearly present in the resulting
inverted source function. On the other hand, the Kikuchi &
Kanamori method fails to resolve the second pulse for the
short separations (St=2 and 3s), and retrieves the
amplitades incorrectly except for the longest separation. An
increased number of iteratiovns does not sigoificantly
improve its performance.

In principie, the Kikuchi & Kanamori method can be
amended in the following way, to ensure convergence on the
least-squares solution after a number of iterations N equal
to the dimension of the parameter space: at the second
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iteration, seck a vector m‘> having components both along
the previous unit vector e, and along the largest
component of G¥s'* [say, e®], such that
GTs? = GT{s - Gm™®) (A.10)
is orthogonal to both e and e® [in the standard Kikuchi
& Kanamori method, GTs'® is orthogonal only to e]; this
requires solving a 2 X 2 system. At the third iteration, seek
m'? such that GTs™ is orthogonal to e, e®| o™ ete.
Under these conditions, the final residual, s is such that
G™s" is orthogonal to all vectors ' {i=1,2,..., I},

If one were to apply the least-squares method to the
residuat vector s’ defined in {A.3), it is easily shown that
the resalting source time function m{), would be:

mil) = (G'G) 'GYs — (GTG)'GFGm™V

zmll:v%m(”e{l)9 {All)
this result being easily extended by induction. In particular,
if we carry the amended Kikuchi & Kanamori method as
described above to N iterations, where N is the length of the
time series of the source,

N
m) =my,, — > mPe®

i=1

(A.12)

However, following the above remark, G's"*’ which must

be orthogonal to all N unit vectors in the space, is identicaliy

zero; therefore m&Y) also is, and (A.6) becomes

N
W, = >, mle®,

i=d

(A.13)

which proves the identity of the two methods if the
least-squares method is neither damped nor weighted and
the amended Kikucht & Kanamori inversion is carried to a
number of iterations identical with the dimension of the
source space. In practice, this is never done, due to the very
farge amount of computation required for the full,
amended, Kikuchi & Kanamori method; in particalar in this
method, the order of the linear system to be solved at each
iteration increases with the number of the iteration; tf the
method is carried to f = N, the final system ts N x N at this
stage, the method bears no computational advantage over
the exact inversion (A.1).

In conclusion, there exist systematic differences between
the two methods, which can become very significant when
inverting for puises with short separation or long duration,
as demonstrated by the experiment in Fig. A.l. In such
cases, amending the Kikuchi & Kanamori method to ensure
convergence is usually not a feasible alternative, due to the
amount of computation, which fast becomes prohibvtive.
Additional differences may evolve from the weighting and
damping chosen for the least-squares method. In practice
the weighting matrix is determived at ecach step by the
variance of the data. As is common in inverse procedures,
the choice of the damping parameter is directly linked to the
compromise between the desired stability and resolution, in
the present case between the identification of individual
sources and the regularity of the moment rate function.




