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A Theoretical Discussion of Time Domain Magnitudes:

The Prague Formula for M; and the Mantle Magnitude M,

EMILE A. OKAL

Department of Geological Sciences, Northwestern University, Evanston, Illinois

A combination of swrface wave theory and phase-stationary asymptotics is used 1o relate the
time domain amplitude a(f) of a strongly dispersed wave and the moment M, of the source,
This approximation is valid at sufficiently large distances, over 10° for 20-s Rayleigh waves.
We apply this formalism to justify theoretically the Prague formula for M,. Assuming a Ray-
leigh O of 297, we can successfully model the theoretical distance correction as 1.66 logiy A in
the range 20-160° We also predict a relation of the form logo Mo = M, + 19.48, in good
agreement with reported empirical values. Finally, we show that the theory requires M, to be
described by the product {(aT'); the use of the ratic {(a/T) is a partial and ad hoc compensation
for a large mumber of frequency-dependent terms ignored in the Prague formula. The same for-
malism can be applied to the inversely dispersed branch of mantle Rayleigh waves, between
periods of 60 and 230 5. We provide the theoretical justification for the use of time domain
measurerments to obtain a mantle magnitude, and in particular for the modeling of the ratio a/A
of the time domain and spectral ampiitudes as X7, at distances ranging from 20 to 120°. At
greater distances, and in particular for multiple passages, an additional distance comrection must

be effecied.

1. INTRODUCTION

With the development of digital dat2 and progress in
inversion theory, most earthquake sources are now
described through their seismic moment M, which is
given routinely by a variety of agencies. However, by far
the mast popular measure of earthguake ‘‘size’’ remains
the 20-s surface wave magnitude M, . In particular, Geller
and Kanamori [1977] have shown that it provides con-
tinsity with hisiorical events, since it is basically
equivalent to the *‘Richter’” magnitudes as listed, in par-
ticalar, by Gutenberg and Richier [1954]. The Interna-
tional Association of Seismology and Physics of the
Earth’s Interior has adopted in 1961 the so-called Prague
formula for M, [Vanék et al., 1962}

M, = log, g— +1.66 fog A+ 3.3 (1)

where a s the zero-to-peak amplitude of ground dis-
placement measured in microns at a period T close to 20
s and A is the epicentral distance in degress. However,
there does not exist, to our knowledge, any full
justification of this formula and of its theoretical relation
o the seismic moment A, In particular, three points
deserve critical analysis: (1) the systematic investigation
of the theoretical basis and of the performance of the dis-
tance correction coefficient, 1.66; (2) the justification of
empirical relations found in the literatare between M,
and the seismic moment M, based on the use of the con-
stant 3.3 in (1); and (3) finally, the practice of using the
ratio {a/T) in (1),
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In this paper we use the classic theory of surface wave
excitation and propagation to shed some light on these
questions and in particular to discuss the theoretical range
of application and limitations of the Prague formula. In
addition, we discuss the extension of the concept of a
time domain measurement of earthquake magnitude to
much longer periods, in the framework of our companion
investigation of mantle magnitudes [Okal and Talandier,
this issuel.

2. THEORY

The theory of the excitation of surface waves by an
carthquake source has long been worked ont by a number
of investigators, notably, Harkrider [1964] and Gilber:
{1970]. These studies have all been carried out in the fre-
quency domain. In order to relate directly the amplitude
of oscillation x{t) observed in the time domain to the
spectral amplitude A (), we consider the inverse Fourier
equation

2= o= | e eior o0 g (g
2 =

for a particular group time fy and at an epicentral dis-
tance D, We further assume that the wave is sirongly
dispersed, i.e., that we can define a single (positive) fre-
quency @y sach that the group velocity Uy = (dwidk )mﬁ
equals exactly D/ty . In addition, we assume that the
spectral amplitude A(®) and initial phase ¢p{w) are
slowly varying in the vicinity of o = % .

We proceed with a variation of the phase-stationary
approximation, which we describe in some detail, keep-
ing track of the various approximations in order to assess
their applicability. We first concentrate on the positive
frequency ®, and replace (2) by

4194

g?@@



OraL: TivE DOMAIN MAGNITUDES
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This approximation will be valid if A (@) and (W) vary
with frequency slower than do the phase terms kept under
© the integral. The validity of this approximation will be
discussed later.

‘We consider a record band-pass-filiered in the range
{Omin » Omag ] I practice, we will define these bounds as
the two Airy frequencies limiting the interval of strong
dispersion of the wave. We further write the integral in
(3) in terms of the wave vector &

P

x(tg) =

—oa

I= j exp li(kdMo— kD)1 -Uk) - dk (@
and expand

_ _ 1 1du N2 s
k) =wy+ Uy k ko}+2[dk}ko(k koy* (5)

Again, this approximation would not be valid if 40U /dk
vanished, for example, at the Airy phase observed for
oceanic dispersion around 40 . In (4), 14 is large, and
U (k) is slowly variable, lcading to

[ = Uo ei{cooro = Ugkgty)

kmax
i |du
x kj exp [»—2- [—Eg}kato(k—ko)z}-dk (6)

min

The quantity (dU /dk )y, is simply related to the slope

o = dU/dT of the group velocity as a function of period
along the dispersed branch:

awl o
dk ik, o

and (6) simiply becomes

Q)

1=U, o @0~ Vekoto) 1 @ i

2 voD

x {erf [e"miio—tg- (ko—kmin)}
]

+ erf [e"m-%?i (K pmax = ko)J } 1ty

Similarly, the contribution of the negative frequency,
—Wg, is the complex conjugate

* —ilagty — Ugkytey 1T g [ s
I'=vu 1 %o i
o€ 2 vaD ©
y [erf* [e*‘“"*w—-—m"“w (kowkm)J
®o
+erf* [e‘ﬂ“—m—”’f’ (kmxmko)} J ©)
0
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There are no additional approximations between (6) and
(8) and (¥). As 1ty is changed by dr, the phase of ihe
exponential terms varies as

Wy dr + [todw— Ugty dk] ~ [kgtg dU '%“k(}Uo di] (10)

The last two brackets vanish {(remember [/ f = D con-
stant), which gives the resulting signal the appearance of
a sinusoid of angular frequency @, Its zero-to-peak
amplitnde is simply

_ Alwe) Ug wy

2n NoD
x | erf {e””‘" T;}D (k()_kmin)}

(i1

+erf g™ oD
Wy

{kmax - kﬁ)}

This expression is ciearly controlled by the behavior of
the funcdon &(x) = erf(¢'™ x) for real values of x. For
small values it behaves as (2/Vr)e'™ x and approaches
the real number 1 for x — oo,

3. APPLICATION TO M,

In the case of the magnitude scale M, we consider the
dispersion of Rayleigh waves for an average Farth model
(which we obtained by combining Ofiver’s [1962] oce-
anic and continental models with weighting ratios of 2:1),
between 15 s (U = 2.0 km/s) and 40 s (U = 4.0 km/s),
corresponding 0 ko = 0.039 km™ and k. = 0.113
km™, Measurements are taken at T =20 s (kg = 0.080
km™; Uy =3.6km/s; o=008 km/s?). Using these
values, we computed numerically the relevant values of §
when the epicentral distance A varies from 1° to 170° (D
varies from 11l to 18,903 km), Figwre I shows that as
long as A > 10°, the two complex etf functions in (11)
can be replaced by their asymptotic value for infinite x
{one), vielding

e=L A (0g) Ug g _s A(wg) Ug a2
T Yo D 7 TyVa D

where Ty = 20 s is the period at which the measurement
is taken, the error introduced between (11) and (12) being
within +0.05 units of magnitude. This result is a direct
illustration of the method of phase-stationary integrals
[Erdélyi, 1956]. However, by detailing its derivation, we
can discuss the validity of all successive approximations.
First, we still must justify the approximation in (3).
The phase-stationary method will work if the rate at
which the spectral amplitude A (@) varies with frequency
is slower than the rate of change of the phase under the
integral sign in (6). While A is a somewhat complex
function, not only of @ but also of the focal geometry
and depth of the source, an estimate of its behavior with
frequency can be obtained by averaging its values over a
wide range of these parameters [Okal and Talandier,
1987, this issue]. Figure 2 is a close-up of Figure 3 of
Okal and Talandier [this issue], showing the variation
with period of the logarithmic average excitability for a
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Fig. 1. Behavior of the “‘erf”’ functions in (11) in the case of
20-second Rayleigh waves. The function plotted is the loga-
rithim {base 10) of the modulus of the sum of the two complex
erf functions in (11), as a function of the logarithm of epicen-
ral distance in degrees. The figure shows that to the right of
the dashed line (A 2 10°), the erf functions can be approxi-
mated by their asymptotic value, 1, with an error of at most
0.05 units of magnitade,

number of depths ranging from 10 0 75 km. This quan-
tity can be defined as the logarithm of an average (iaken
over many focal geometries) of A () for a unit moment
of 1077 dyn-cm. The thick line is the spline used by Ckal
and Talandier [his issue] o describe A{w); except for
the two deepest sources (60 and 75 km), it gives an ade-
quate estimate of the excitability. The slope of this
curve shows thai in the vicimity of 7' = 205, A grows
approximately like 0>° (slower at longer periods, and if
anelastic attenuation is taken into account), If we define a
characteristic time 7, = [A ()]~ d4 (w)/dw, this sug-
gests that 1, varies from 65 at T =153 10 118 at
T =353 This quantity must be compared to 1/8w,
where 8w is the change of frequency necessary to flip the
phase of the exponential in (6). It is easy to show that
S0 = Ugtog NoD , so that in the end the approximation

(3) requires
2
2

At T =20 s, this is equivalent to I > 1023 km, or in
round numbers, A > 10°,

Taking into account the effect of anclastic attenuation
would reduce the dependence of A{w) on @ by subtract-
ing from 1, a term D/20UQ, which is about 0.5s at
D = 1000 km, and in practice does not affect the con-
straint {13}

An additional problem could be that of the source
phase ¢, in (%), which in principle also varies with fre-
guency if the mechanism is not “‘pure’’, ie., involving
either only horizontal motion or only vertical slip on a
purely vertical faolt plane. This is due to the variation
with frequency of the three independent excitation
coefficients. The latter can be expressed in a variety of
ways, such as Kgq, Ky, £, in the formalis*m of noimal
modes [Kanamori and Cipar, 1974] or K{, K5, K3 In
the formalism of surface waves [Okal, 1982]. The exact
expression of their variation with frequency is complex,
but the following order-of-magnitude argument can be

47°
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made in the case of the Rayleigh wave of a homogeneous
half-space: The wvaration with frequency of the
coefficients K is controlled by the decayving factors of the
compressional and shear potentials, expl-nwz/C . where
z ig the focal depth, C the phase velocity, and 1 = 1,39
for the shear potential; 0.85 for the compressional one,
Therefore the characteristic time for the variation of X,°,
and hence of ¢, is

1 dk;
E, do

=1 = (14)

T¢:: C

For a typicai earthquake, z = 30 km, C =4 km/s, lead-
ing 0 Ty on the order of 6 s or less. This is much larger
than /00 used io discuss (13), and the variation of ¢y
can be neglected.

In practice, the measurement of time domain ampli-
tudes is usually carried out directly on a seismogram, and
the ground motion is rewrieved by simply dividing the
measured amplitede ¢ by the instrument response at the
appropriate frequency R (wg). Thus we must also discuss
the influence of the variation of R (w) with frequency on
the validity of applying phase-stationary asymptotics.
Most M, measurements are iaken on so-called “‘long-
period’” instruments, such as the WWSSIN LP, peaked at
or close to 20 5. R is actually stationary at this period,
and its average falioff in the ranges 10-30 s is approxi-
mately 3 dB per octave, leading to a characteristic time
tp = 1.5s. This coniribution is again negligible when
compared to 1,. As for the phase ¢p of the instroment
response, its variation d¢;/dw is approximately m/2cy
for a critically damped instrument; this figure, on the
order of 55, must be compared with the much faster
variation of the phase term due to propagation, & (()D.
In brief, the influence of instrument response on the vali-
dity of the phase stationary asymplotics is negligible for
a long-period system.

Thus we conclude that the range of validity of the
approximation in (3) is A > 10°; its being identical to the
range of validity of the asymptotic expression of the erf
functions in {11} is fortuitous, since it involves the pro-
perties of the excitation coefficients controlling A (@)
which are not involved in (11).
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Fig. 2. Logarithmic average excitability, as defined by Okal
and Talandier [this issue), plotted for Rayleigh waves as a
function of period. The various symbols {from 0 w0 9) refer to
10 source depths, from 10 to 75 km. The thicker trace
corresponds to A = 20 km, which is retained for the computa-

tion of Cy in (15).



OxaL: TiME DoOMAIN MAGNITUDES

Equaton (12) relates the time domain amplitude a(7)
to the spectral amplitude A{®) of the dispersed wave.
The influence of the parameters o and D is straightfor-
ward: they control the amount to which the wave is
“‘spread out’’ over the group time ¢. There remains to
relate A {w) to the physical size of the source, ie., to the
seismic moment M, In Ckal and Talandier [1987, this
issue], we have introduced a mantle magnitude M, based
on the measurement of the spectral amplitude of very
long period Rayleigh waves. We showed in particular
that the relationship between the moment M, and the
spectral amplitude A {o) could be writien in the form

Iogm Mo T—Mm + 20

= logw A(U}) + CS + CD + 19,10 (15)
In this formula, My is in dyne-cm and A in pm-s. Equa-
tion (15) remains valid at any period, with adequate
values of the source and distance corrections Cy and Cp.
Thus the above results suggest the following relation
between the amplitude of the 20-second Rayleigh wave
in the time domain, 2, and M

logu) M() = 10g10 (a T) + CS 4 CD

O L

U

+ 0.5 loggo A + logo { }+ 19.10 (16)

where A is now in degrees and I, = 1112 km is the
fength of 1°,

The source correction Cy expresses the variation of the
excitation of Rayleigh waves with frequency. This term is
a priori dependeni on focal mechanism and depth, The
philosophy of a magnitude measurement is that these
parameters are left unknown and not corrected for, We
refer 1o the above two papers for a detailed method of
averaging this correction over a large number of focal
geometrics and for a discussion of the effect of an unk-
nown hypocentral depth. Figure 2 justifies the use at 20 s
of the cubic spline proposed by Okal and Talandier [this
issue] and shown as the thick line, for depths ranging
between 10 and 50 km. The corresponding value at 20 s
is Cy = 3.06 . With M, given by the Praguc formula the
expected relationship between M and M, results from
the two equations:

Ing Mg= logm (al) + [CD + 0.5 IOgmA} + 21.78 (17&)

My =logyo (@T) ~ 2 log)g T + 1.66 logio A + 3.3 (17h}

In (175, we have artificially introduced the product (aT)
in order to facilitate a direct comparison between M, and
M.

4, DISCUSSION OF THE PRAGUE FORMULA
Justification of 1.66 logp A

The distance correction Cp wvalid in the spectral
domain is composed of a term 0.5 logy sinA due to
geometrical spreading on the spherical Earth and of a
term [(logyg €) wD/2UQ 1, which corrects for anelastic
attenuation during propagation. In the time domain the
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Fig. 3. Influence of Rayleigh O on the behavior with distance
of the term CJP. For each value of {J this term is regressed as
a function of logyy A. The comresponding slope is plotted. A
slope of 1.66 is obtained for @ = 297,

additional term 0.5 log)o A expresses the fact that as dis-
tance increases, the energy in any small frequency band
around @y is spread out over increasingly large group
time intervals. We define the full time domain distance
correction as CAP = Cp + 0.5 log,p A. This general form
of the effect of distance on the time-domain amplitude of
a dispersed signal was given by Ewing er al. {1957}
They did not, however, discuss in detail the range of
validity of the approximations involved. Furthermore,
iheir book predates the development of the modern con-
cept of seismic moment and o a large extent the present
framework of the theory of the excitation of surface
waves, as such, they did not directly relate a 1o the
earthquake size, described nowadays by M, We seek to
justify that CA” can be modeled as 1.66 logq A + b.

At distances greater than 20°, Nusli [1973] showed
that the form of distance decay used empirically for 20-s
amplitudes (~1.66 log;q A) would approach the theoreti-
cal expression proposed by Ewing et al. [1957], assuming
a distance attenuation coefficient v = 0.0015 deg™. This
would comrespond to a relatively high value of O =
325-390, depending on the exact dispersion curve used.
In addition, he was working under the assumption of an
Airy phase, which is probably unwarranted at 20s. In
the present study we assume that the magnitude measure-
ment is taken on a strongly dispersed branch, away from
an Airy phase, and seek whether an adequate value of 0
can reconcile the two distance corrections in (174) and
(176).

Vanék et al. [1962] indicate that the Prague formula
can be used between 2° and 160°. However, we have
shown that the approximation of the erf functions in (11)
is expected to deteriorate significantly for A < 10°, Simi-
larly, the separation of the amplitude out of the integral
in (3) will not be valid below 10°. We thus investigate
the behavior of the theoretical correction CLP in the
range A = 10°-160°, with ¢ varying between 200 and
400. For each value of Q, we regressed CZP against
logye A; Figure 3 shows that the resulting slope depends
significantly.- on Q. A slope of 1.66 is achieved for
@ =1297. The corresponding =zero-intercept is b =
-1.623. Figure 4 shows the resulting fit between the
two corrections,

Because of the extreme heterogeneity of crustal struc-
tures, it is difficult, if at all meaningful, to ry 1o defing
an average ¢ for Rayleigh waves at 20 s. Using the work
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Fig. 4. (Top) Theoretical distance correction CAP as a func-

tion of distance (solid curve), compared to its approximation
through the Prague formula (dashed curve). (Bottom) Residual
CIP Z1.66 logio A+ 1.623 of the two distance corrections,
plotted as a function of distance. Note that the fit deteriorates
significantly below 20° and beyond 150°.

of Canas and Mirchell [1978] and the regionalization
proposed by Okal and Tulandier [this issue], the average
oceanic {7 is found to be 261. Hwang and Miichell
{1987] suggest values as high as 360400 for the South
American shield and values around 120-130 in tectoni-
cally active continental areas. A global average using
these values would yield ¢ = 240. However, the geo-
graphical sampling of the Earth’s surface by Rayleigh
wave paths is far from homogencous. Similarly, the
regression in Figure 2 weights all distances equally, while
M, measurements are rarely taken beyond 140° and may
be made at periods significantly shorter than 20 s at short
distances [Vanek er al., 1962). We conclude that the
value @ =297 explaining theoretically the coefficient
1,66 is not improbable as an average of the known
attenuation properties of Rayleigh waves between realis-
tic epicenter-station pairs. In addition, we note that in
early works, a higher value was often found for the dis-
tance correction coefficient e.g., 2.0 [Guienberg and
Richter, 1942]. This can be understood if the values of O
involved were lower, as indeed would be expecied at
Pasadena, where shields paths are few and the influence
of the highly attenuating Western U.S. structures is
important.

Assuming the optimal 0 value of 297, we have shown
that CAP can be modeled as 1.66 logy A — 1.623. Figure
4 shows that the residual between this expression and the
exact value of the distance correction never exceeds *
0.05 units of magnitudes at distances between 20° and

TiME DOMAIN MAGNITUDES

150°. As expected, the fit starts to deteriorate for

A = 150° due to the focusing of energy at the antipodes.

This behavior, correctly described by CAP but ignored in
(1), results in overcorrecting of the distance effect by the

Prague formaula.

On the other hand, at distances shorter than 20°, the
residual on Figure 4 becomes positive, the Prague for-
mula imderestimating the distance correction. This is
because the term 1.66 logyy A is designed among other
things to compensate for the effect of attenuation; at
short distances the modeling of the attenuation by a loga-
rithmic rather than a lincar function is significantly
deficient. In addition, at short distances, the effect of the
dispersion can no longer be described through the phase
stationary asymptotics, since the approximation between
(11) and (12) is not expecied to hold. In the vicinity of
an Airy phase it is in principle possible [e.g., Nuttli,
1973] to replace the A™? dependence in (12) with the
A3 expected from a higher-order expansion of (10)
{Jeffreys, 1925; Ewing et al.,, 1957]. On the other hand,
Gutenberg {19321 and Gutenberg and Richter [1936]
have proposed that amplitudes decay as A™Y* (and 4™
at short distances), but the origin of the proposed
exponents -1/4 and -1/6 remains obscure. Furthermore,
neither of these authors considered the variation of A (W),
which, as discussed above, can invalidate (3) in the first
place. Finally, it is clear that propagation along very
short paths, in the range 4 £ 10°, cannot achieve the geo-
graphical averaging of atienuation properties inherent in
the use of any worldwide formula. This was noted by
Alewine {1972} who proposed to correct the expression of
the magnitude scale at short distances, using regional-
zed O models.

We conclude that despite several problems at shorter
distances, the use of the correction 1.66 log;y A can be
justified in the usual range of A, measurements.

M =My Relationship

After combining (17) with the results of the previous
section, we find that the following relation is expected
between M, and M

logio Mo = M, + 1946 (18)

Obviously, this expression will be valid only when the
source can be described as a space-ime & function, ie.,
for the sufficiently small earthquakes which do not
involve source finiteness effects leading to the distortion
and cventual saturation of M,. Geller [1976] suggests

that this corresponds to logo Mo < 25.6, Eksrdm and -

Dziewonski [1988} give the more swingent conadition
iOg.‘:O M() <245,

~ Our theoretical relationship (18) compares very favor- -
ably with its empirical counterparis published in the
literatare; on the basis of a large data set of more than
2000 events, Ekstrém and Dziewonski [1988] propose a
constant of 19.24. Geller [1976] proposes a significantly
lower value (18.87); similarly, Purcaru and Berckhemer
[1978] proposed a constant of 18.8 on the basis of about
25 events with M, €55, The nature of the data sels
used to obtain these valpes is not given. J. Talandier
(personal communication, 1988} obtained an average of
19.59 + 0.23 for a data sei of 323 events measured at
Papeete, Tahiti; the worldwide average for these evenis
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TABLE 1. Vadation With Period T of the Principal Parameters in {16)

T, c., o’ o, -
s Cy g km/s km/s (A = 60°) kemys® logo -%T‘L Cy Zlogo T deg
i5 2.685 350 371 2.00 0.867 0.5 -0.451 3.101 2352

17 2.865 325 3.80 3.00 0.549 03 -0.739 2.675 2461 is
19 3.006 310 3.88 3.30 0.468 0.15 -(0.930 2.544 2.558 9
20 3.065 297 3.93 3,60 0.426 0.08 -1.105 2386 2.602 10
21 3.120 285 395 3.65 0.417 0.065 -1.156 2381 2.644 9
23 3212 270 3.97 370 0.39% 0.05 -1.219 2.389 2,723 14
25 3.288 250 3.99 3.75 (0.388 0.03 -1.336 2.340 2.796 30
30 3430 225 4.01 3.85 0.350 0.02 -1.435 2.345 2.954 500
35 3.524 200 4.02 3.95 0.329 0.015 -1.509 2.344 3.088

TOn.ty the second, frequency-dependent term in Cp is compiled.

was 1925, practically equal t0 Eksttbm and Duzie-
wonski’s, the difference with Papeete (0.34 units) point-
ing out to the significant influence of regional structes,

Furthermore, as mentioned above, for such small earth-
quakes, few records will be obtained at large distances,
and M; will most probably be measured at distances not
exceeding 110°. For this range of distances, CZ? is actu-
ally overestimated by the Prague distance correction by
0.02-0.04 units (Fignre 4). This acts 10 slightly narrow
down the difference between our constant and Ekstrém
and Dziewonski’s {1988] empirical average.

Finally, the history of the exact origin of the term 3.3
in the Prague formula is somewhat confused. Vanék et
al. [1962] indicate that this constant must be regarded as
an average of many individual and empirical compila-
tions. G. Purcaru (personal communication, 1988) has
indicated to us that the scatter involved in this average
may reach 0.4-1.3 unit of magnitude, depending on such
factors as the number of stations used in the averaging.
Given this estimate of the stability of the magnitude scale
M,, the fact that we derived theoretically an M, ~M , rela-
tionship upheld experimentally within 0.2 units of magni-
tude and falling between a world wide average and the
average for a large data set al an oceanic station must be
regarded as satisfactory.

The Question of (a/T) Versus (a T)

One of the most important results of this analysis is
that we predict that the seismic moment is related 1o the
- time domain amplitude through the product (al’) of
amplitude and period, rather than through their ratio,
commonly used in many magnitude scales, including in
the Prague formula. Hence the term -2 logo T in (175).
The use of (a/T') stems from early attempts [e.g., Guren-
berg and Richter, 19421 to measure the total elastic
energy released by the earthquake source, the energy of a
perfect harmonic oscillator being, of course, proportional
to a%T? However, this is true only for a monochromatic
oscillator. The seismogram recorded on an instrument
with a narrow-band response may look moncchromatic,
but modern source theory has taught us that the spectrum
of the seismic source itself is bagsically flar below the
corner frequency and that the total energy released is

proportional to Mg and thus to the supposedly constant
value of A(w) below the comer frequency. Why then
does the time-honored practice of using a/T in (1) work,
if at ali?

It is important to realize that most M, measurements
are taken at 20 s, or very near that reference period. Then
the term -2 log,y T is practically constant and can be
absorbed into the final consiant, as is often done. For
example, it is customary, especially in Western countries,
to restrict the measurement of M, to a narrow range of
periods, in practice 17-23 s [Purcaru and Berckhemer,
1982]. However, observatories in the Soviet Union and
Eastern Europe occasionally report M, values taken at
more scatiered periods, as discussed briefly in the original
Prague formula paper [Vangk et al, 1962]. In view of
this practice, we will discuss the theoretical bias which
¢an be expecied if the period is allowed to change sub-
stantially around 20 s. This discussion will also be
important for the extension of the magnitude concept o
manile waves in the following section.

When the reference period T is changed, the constants
in M, given by (1) are unchanged. However, many
parameters in (16) can be expected to vary significantly
with T'. Table 1 lists their values at selected periods
between 15 and 35 s, based on Oliver's [1962] average
dispersion models,

The correction Cy, easily computed from Equation
(10) of Okal and Talandier [this issuel, increases by 0.84
units between 15 and 35 s. In Cp, only the second term,
correcting for anelastic attenuation, is period-dependent.
It is somewhat more difficult to evaluate, since at each
period, we need in principle a new Rayleigh Q. Also, its
variation with period is itself distance dependent. In
Table 1 we use a typical distance of 60° and assume a
world average Rayleigh Q decreasing from 350 at 15 s
to 200 at 35 s. The decrease of Cp is 0.54 units from 15
to 35 s.

The strongest variations are those of U (from 2 t0 3.95
km/s) and above all o (from 0.5 km/s® at 15 s 0 0.015
km/s® at 35 s). Table 1 lists as

wh Yo
Cy = Cs + (logjp e) 55‘5 + log;o “g‘ (19)

the sum of all period-dependent terms in (16). This quan-
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Fig. 5. (Top) Variation of the term Cy defined in (19) with
the period of measurement. The guantities plotted are the resi-
duals of Cy with respect to its value at To = 20 s, for A =30°
(open: squares), 60° (open triangles; see values listed in Table
1), and 90° (asterisks). These values are compared to the
correction -2 loge (T'/T¢)} introduced by the use of a/T in the
Prague formula (solid curve). (Bottom) Systematic bias
Cy — Cy(Ty) + 2 logyo (T/Ty) introduced through the use of
Prague formula; symbols as in the top frame.

tity drops about 0.7 units of magnitude between 15 and
20 s but remains fairly constant at longer periods.

The compatation of M, ignores the wvariation of this
termn but replaces it arbitrarily with -2 log;o T, which is
plotted as the solid curve on Figure 5. This in effect
reduces the systematic error to at most .46 units of mag-
nitude. Within the range 17-23 s adopted by most
‘Western observatories, the variation remains on the order
of 0.15 units. Figure 5 also shows that these results are
not significantly affected by the use of a different dis-
tance.

In conclusion, the two most period-dependent terms are
the correction for anelastic attenuation {which is also
distance-dependent) and the parameter o, characterizing
the dispersion of the wave. It is clear that o should have
an important effect on the amplitude of the wave, since
in effect it controls the spreading with group time of the
energy contained in a narrow frequency band around oy,
Both of these parameters are completely ignored by the
Prague formula. It so happens that the 1/7'? ““correction’
compensates partially for their absence, reducing the sys-
tematic error in the 17-23% s period band to within the
level of + 0.2 units, which is generally accepted as
characteristic of the precision of magnitude scales.

In addition to the deterioration of the 1/T? correction
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at larger periods, we want to emphasize, that because of
substantiaily reduced values of o resulting from the pres-
ence of an Airy phase at 40 s, the use of the Prague for
mula at longer periods and short distances gquickly
becomes improper. The last column in Table 1 shows the
minimum distance Ay;, at which it is legitimate o .
replace the erf functions in (11) by 1; we obtained these
values by requiring that the real argument of the function
& remain larger than 1.7 . Clearly, this approximation
breaks down very fast as the period is increased beyond
25 s. By comparison, the domain of invalidity of the
approximation (3) is found to increase only much
slower, from about 0.5 at 15 5 to 26° at 30 s,

The fact that a/T' does not provide a satisfactory,
stable estimate of the size of the earthquake source was
pointed out at much shorter periods by Herrmann and
Nugtli {1982}, who proposed io replace Nuwli’s [1973]
mr, regional magnitude featuring a term logye a/T, with
an my, (f), featuring only logo a. As discussed more in
detail in the next section, such a behavior would be
expected when the arguments of the erf functions in (11)
become very small. This could be the case at the short
periods characteristic of Lg; however since Lg actually
consists of the superposition of many swmface modes
{Knopoff et al., 1973], it is difficult to define constants
such as o in (11), and a direct comparison of the results
is impossible.

Finally, we want 1o stress that according to the Prague
convention, M, is supposedly measured on the horizontal
component; as such it may be taken on a Love wave; in
the present study we have assumed that ¢ is taken on the
vertical component of the Rayleigh wave. This follows
the practice, common in recent years for the National
Earthquake Information Service and other agencies, to
report measuremenis taken on the vertical component
(**M;Z""). This eliminates the need to rotate the horizon-
tal components; in addition, the vertical displacement of
a Rayleigh wave is more robust than the horizontal one
with respect to changes in crustal structure; finally, as
discussed by Geller and Kenamori [1977], the contamina-
tion with Love waves and overtones may offset the bias
of 0.15 units expected from the surface ellipticity of a
Rayleigh wave,

5. EXTENSION TO MANTLE WAVES:
THE TIME-DOMAIN MAGNITUDE M 1P

The purpose of this section is to discuss the extension
of a formula of the type (12) to the inversely dispersed .-
branch of mantle Rayleigh waves between 50 and 250 s.
We are motivated in this study by (15), which defines a
spectral domain mantle magnitude, M,, [Okal and Talan-
dier, this issue]. We seek to extend this concept to a
measurement taken in the time domain, and specifically
to justify theoretically the formula used by Okal and
Talandier [this issue; Equation (16)}:

MIP = logyo (aT) + Cp + C5 — 120 20
Equation (11) remains valid for mantle waves under the
condition of sufficiently strong dispersion. In practice, the
bounds of the dispersed branch will now be
Wrpin = 277250 and g, = 21750 s, respectively.
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The applicability of (11) requires that the measurement
not be taken in the vicinity of an Airy phase. In the case
of mantle waves this means at periods of between 60 and
230 s. Measurements taken around 50 or 250 s could be
mvalid. In addition, the minimum distance at which the
spectral density A (@) can be taken out of (3) is stll
given by (12), with obvicusly different values of the con-
stants. Our results on Rayleigh wave excitation [Okal
and Talandier, this issue; Equation (10)] suggest that its
contribution to T, is now on the order of 0.5 s. Along the
inverse branch, o is typically on the order of 107 kinys?,
resulting in D > 200 km. This condition is not stringent,
since at such close distances, the Rayleigh wave is not
properly developed in the first place. In addition, anelas-
tic attenuation also contributes (o the variation of A with
frequency, actually resulting in an upper bound on D,
found to be on the order of 100,000 km. In short, (12)
holds for mantle waves at all distances typical of telese-
ismic Rayleigh waves,

The next step in our study of M, was 1o replace the erf
fanctions in (11} with their asymptotic values (one) for
infinite argument. However, in the present case, this
approximation is no longer possible, the main reason
being that o takes considerably smaller values: from
25x 10 km/s> at 60s; to a maximum of 2.1x
107 km/s® at 1405 (as opposed to 0.08 knvs® for 20-s
Rayleigh waves); in addition, the ratios of k to o, ie.,
the phase‘slownesses 1/C, are also smaller. Under these
conditions we study systematically the variation of a, as
given by (11) for unit A (@), with period and distance.
For each value of the period T between 60 and 230 s, we
use specific values of k, U, and o. We let the distance
vary between 20° and 120°, which is representative of the
data set at Papeete, Tahiti, used by Okal and Talandier
[this issue]. Extension to other distances is discussed
later. Results are shown on Figure 6a, on which the vari-
ous lines and symbols correspond to different values of
T.

For most values of period and distance the moduli of
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the complex arguments of the erf functions in (11) are of
order 1, leading to oscillations in the resulting value of
a. While the data set on Figure 64 is best fit as a func-
tion of log,o T with a slope of ~1.4, Figure 65 shows that
modeling of a/4 as 2/T yields residuais no larger than
+0.22 magnitude units, for periods no greater than 200 s.
On the other hand, dependence on distance is very weak,
with a best fit slope of only —0.2 . Physically, this means
that in this period and distance ranges, dispersion is
strong enough to build up a mantle Rayleigh wave in
which each successive oscillation, or arch, has an
apparent period significantly different from the previous
one, a situation familiar to observatonal seismologists
angd which was the basis of Okal and Talandier’s [1987]
modeling of the relationship between time domain and
spectral domain amplitudes (sec their Figure 2):

ald = 2T 21
For iow values of T, and especially at the shorter dis-
tances, the ratio a/A is found practically constant and
equal to 0.03 Hz. Mathematically, in this regime the two
funciions erf(z} in (11) can be replaced by their
equivalent for very small arguments, (2/Vr) z, leading to

a1 Aw) = i— U (emax — ki) = 0.0315 Hz  (22)

Physically, this corresponds to circumstances (both o and
D small) under which dispersion is too weak, with prac-
tically ail energy in the wave arriving at the same time,
and the signal comprising only one seismic phase, as
shown on Figure 15 of Okal and Telandier {this issue].
iIf condition (12} is fulfilled, i.e., beyond a distance of a
few degrees, time domain measurements could ssll be
taken in principle, but using the constant ratio of 0.0315
Hz between ¢ and A. As mentioned above, this situation
may correspond to the case of Lg for which Herrmann
and Nuttli [1982] have proposed using the amplitude @
instead of a/T in the computation of a magnitude.
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On the other hand, if distance is increased greatly, for
example, if we consider multiple passages of the Ray-
leigh wave, dispersion becomes too strong, i.e., group
times at the station for significantly different periods are
separated by more than the typical period of the mantle
Rayleigh wave, The following simple calculation based
on Ckal and Talandier’s [1987] model can be used to
estimate a minimum distance for this regime. Assuming
we take a measurement at a period Ty = 2Zm/o, , (21) will
be valid only if the neighboring oscillation in the record
has a frequency ® such that sinc[¥(wFw)To] < 1, or
(g ~ )Ty > 2n. The difference in frequency between
two successive arches, due to dispersion, is simply
o — 0 =2n UHT D «, leading to D < U%a, typically
on the order of 15,000 km, or 150°. Beyond this dis-
tance, the arches in Okal and Talandier’s [1987] simple
model would have apparent periods which are too close
to each other, and (21) no longer applies. Rather, we
reach the regime in which the erf functions can be
replaced by 1, since their arguments are themselves large
compared to 1; an additional correction to (20) of the
form 0.5 log;q A is anticipated.

These results are summarized in Figure 7, in which we
have extended our distances to 900°, corresponding to
multiple passages up to Rs (at greater distances, the
effect of anelastic attennation prohibits using phase-
stationary asympiotics), Realistically, and for such large
distances, we consider only periods greater than 100 s.
Then, 3 formula of the form

2 A
lﬂglg a = lOglg X((D) — logm E -0.5 ]ﬂgl(} “%‘“‘5 (23)

where A is epicentral distance in degrees, leads to
theoretical residuals no larger than £0.2 magnitude units.
On Figure 8, we check this result against real data by
plotiing time domain magnitudes obtained using (20)
from GEOSCOPE records on the Mexican carthquake of
Aprit 30, 1986. The methodology of these measurements
is similar to that given by Okal and Talandier fihis
issue]. In particular, and in order to eliminate the
influence of focal mechanism, we plot residual
differences between a multiple passage and the first pas-
sage R; at the same station. Magnitudes are clearly
underestimated at the very large distances corresponding
to R and R, A regression of this data against logy A
yields a slope of —0.45, in excellent agreement with (23).
This trend disappears if the distance correction in (23) is
used. The change in behavior of the distance dependence
of the time domain amplitude of Rayleigh waves beyond
120-160° was also addressed by Brune and Engen
[1969], at the constant period of 100 s; however, these
authors did not provide a full derivation of the empirical
refationship they proposed between g and A.

When distance is increased substantially (i.e., starting
beyond 120°), the effect of dispersion becomes (oo strong
for {22} to be used, and the distance correction in (23)
must be added, which results in replacing (20) with

MI? =logigla T1+ Cs + Cp + 05 logg A - 2,12 (24)

With this precaution, it is legitimate to use time
domain mantle magnitudes for multiple passages of Ray-
leigh waves, up to Rs.
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6. CONCLUSIONS

The principal conclusions of this study can be summar-
ized as follows:

1. The combination of the theory of propagation and
excitation of Rayleigh waves with phase-stationary
asymptotics leads to an expression of the type (16)
between the time domiain amplitude of a strongly
dispersed wave and the seismic moment of the parent
earthquake; this expression ceases io be valid if the real
argument of the erf functions in (11) become less than
about 1.7, corresponding to A < 10° at 20 s but increas-
ing rapidly to A £ 30° at 25 s.

2. The total distance correction in (16) can be ade-
guately modeled by a linear function of log;eA over the
usual range of magnitnde measurements (from 10° to
160°). A slope of 1.66 is found if the Rayleigh O takes
the average value 297 at 20 s. This figure is somewhat
lower than proposed by Nuwtli [1973], reflecting a broader
range of distances, and his use of an Airy phase formal-
tsm at 20 s

3. With this value of @, the relationship (18) is
predicted for small earthquakes between M, and M. The
value 19.46 is in good agreement with the compilation by
Ekstrém and Dziewonski {1988]. To our knowledge, this
constitutes the first theoretical justification of all con-
stants in a magnitude-moment relationship.

4. The theory predicts that M, should be related to the
product (aT) of amplitude and period, not to their ratio,
That magnitude measurements using (a/T) can occasion-
ally be taken at periods other than the reference period
refiects a partial, and ad hoc, compensation for a large
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number of period-dependent terms ignored in the Prague
formula, The use of {a/T) cannot be justified theorsti-
cally for a strongly dispersed wave. Furthermore, ontside
the marrow interval 17-23 s, it is expecied to lead w0
significant bias.

5. The same theoretical analysis used to justify the
Prague formula shows that it is legitimate to use an squa-
tion such as (21) to relate time domain and speciral
amplitudes for periods between 60 and 230 s, at distances
between 20° and 120°. This justifies theoretically the
use of time domain measuremenis for the purpose of
obtaining a mantle magnitude, as given by (20), and
reported by Okal and Talandier’s [this issuc] Table 7 and
Figure 16. At shorter distances a better formula would
be {22), but the use of (20) brings errors no larger than
+0.22 units.

6. At larger distances, dispersion becomes too strong
for (21) to hold; an additonal distance correction is
required, and (24) must be used. This correction must be
effected beyond A = 150°% then time domain measure-
ments on multiple passages are valid in principle up to
Rs. At even greater distances it is anticipated that the
effect of anelastic attenuation on surface wave amplitude
would prohibit the use of phase-stationary asymptotics.
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