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S U M M A R Y
This paper examines the factors contributing to the ‘sequencing’ of tsunami waves in the far
field, that is, to the distribution of the maximum sea surface amplitude inside the dominant
wave packet constituting the primary arrival at a distant harbour. Based on simple models of
sources for which analytical solutions are available, we show that, as range is increased, the
wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of
delayed maximum, where the largest amplitude takes place during a subsequent oscillation.
In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of
constant depth, the critical distance for transition between those patterns scales as r3

0 /h2 where
r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from
simple arguments based on a model where sequencing results from frequency dispersion in
the primary wave packet, as the width of its spectrum around its dominant period T0 becomes
dispersed in time in an amount comparable to T0, the latter being controlled by a combination
of source size and ocean depth. The general concepts in this model are confirmed in the case
of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor,
as well as in real-life simulations of tsunamis excited by large subduction events, for which we
find that the influence of fault width on the distribution of sequencing is more important than
that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011)
at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the
sequencing patterns observed on DART buoys during these events. By providing insight into
the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis
generated by large earthquakes, our results stress the importance, for civil defense authorities,
of issuing warning and evacuation orders of sufficient duration to avoid the hazard inherent in
premature calls for all-clear.
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1 I N T RO D U C T I O N

The scope of this paper is to understand under which conditions
the maximum amplitude of a tsunami at a receiving shore in the far
field may or may not occur as part of the first-arriving wave.

We are motivated in this respect by the experience of the first
author (EAO) during the 2011 Tohoku tsunami, when he was a
participant in the tsunami warning issued for French Polynesia,
which resulted in the evacuation of low-lying areas in the city of
Papeete, Tahiti. As documented in Reymond et al. (2013), from
which Fig. 1 is reproduced, the largest wave in Papeete harbour
turned out to be the fourth one, occurring 72 min after the first-
arriving wave. As a result, the all clear which had been broadcast
to allow residents to return to their houses and businesses had to be

canceled, leading to an episode of significant confusion among the
population.

This occurrence is far from unique. We recall, for example,
the case of the 1960 Chilean tsunami in Hilo, Hawaii. As de-
tailed by Eaton et al. (1961), the first wave, arriving at mid-
night local time, featured an amplitude of only 1.2 m, while the
maximum of 5 m was reached one hour later, after an all clear
had been issued by the local authorities; it resulted in 61 casu-
alties in Hilo. Similarly, during the 1964 ‘Good Friday’ Alaskan
tsunami, in the coastal city of Crescent City, California, some of
the 11 victims were killed after they ‘prematurely returned to the
evacuation area following the first relatively mild waves, because
they thought the danger had passed’ (National Research Council
1970).
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Figure 1. Maregram of the 2011 Tohoku tsunami at Papeete, Tahiti. Note that the maximum amplitude is carried by the fourth wave, 72 min after the first one
(after Reymond et al. 2013).

We do not consider here the physically different case of signifi-
cantly higher frequency components to the tsunami wave, typically
in the 10 mHz frequency range (or at periods of a few minutes),
which can set harbours and bays in resonance, thus reaching extreme
values for wave amplitude or current velocities, as exemplified in
Toamasina, Madagascar during the 2004 Sumatra tsunami (Okal
et al. 2006), or in Puamau, Marquesas Islands during the 2010
Chilean event (Reymond et al. 2013). Such high-frequency waves,
traveling outside the shallow-water approximation (SWA), can fea-
ture delays of many hours (up to 7 in the case of Toamasina) when
propagating across major oceanic basins. Rather, we limit ourselves
to the case of waves comprising the first packet, broadly interpreted
as traveling under the SWA or very closely thereafter, but featuring
several oscillations whose time separation does not exceed one to
two hours, as shown in Fig. 1. Even in a lower frequency range,
some harbours can feature resonant periods comparable to those
of main tsunami waves (e.g. 22 min (0.75 mHz)) at Crescent City,
which may lead to the amplification of later arrivals, as well as the
development of very strong currents (e.g. Admire et al. 2014). We
will use the model of an ocean of constant depth without any shores
to eliminate such effects, and thus focus on the influence of source
and propagation on the evolution of wave amplitudes.

In order to ease the language, we will refer to the question of
which wave carries the largest amplitude in a far-field tsunami
as ‘sequencing’ of the wave packet; a scenario in which the first
wave carries the maximum amplitude will be called an ‘MF’ wave
(for ‘Maximum First’; Fig. 2a) as opposed to an ‘MD’ wave (for
‘Maximum Delayed’; Fig. 2b) when the maximum amplitude is
carried by a later arrival.

It is well known that the question of the structure of a far-field
tsunami wave, and hence presumably of its sequencing, is a very
complex function of many successive factors in its development:
the characteristics—size and geometry—of the parent earthquake,
the effect of the irregular bathymetry of the ocean basin (which can

e.g. lead to multipathing and focusing or defocusing), and finally
the fundamentally non-linear response of the individual site (shore,
bay or harbour) where the wave is recorded. Here, we seek an un-
derstanding to the question of which one(s) among these parameters
may control sequencing, and in particular the development of MD
patterns.

The last effect, that is, the role of shorelines, may be eliminated
by considering records obtained by DART sensors on the high seas,
unaffected by the response of coastal structures. For this purpose,
we have gathered all available DART buoy records in the Pacific
Basin of the 2010 Maule and 2011 Tohoku tsunamis. On Figs 2(a)
and (b), we show examples of MF and MD records from the Tohoku
tsunami. This establishes that variations in sequencing are not (at
least not entirely) due to coastal response, but rather are already
present in the various far-field wave packets propagating on the
high seas. Figs 2(c) and (d) attempt to map the repartition of MF
and MD records. This is made difficult by the relative scarcity
of DART systems in the Pacific Basin, especially given the many
stations which were not operational during the 2010 Maule tsunami.
Notwithstanding these reservations, these maps would tentatively
suggest that MD records develop preferentially at greater distances,
and in the lobe of radiation perpendicular to faulting (in this respect,
we dismiss the case of the MD records developed in 2011 in the
lee of the Alaskan Peninsula, as they most probably result from
complex propagation skirting the Aleutian Islands, rather than along
the plotted great circles).

In Section 2, we use numerical simulations to reproduce the onset
of MD records based on a number of simple models, in an attempt
to eliminate spurious parameters, and to define the physical origin
of the sequencing phenomenon. We conclude that its root lies in
frequency dispersion arising in the vicinity of, but immediately out-
side, the SWA. By using theoretical models with oceans of constant
depth, we can eliminate the influence of refraction, which has been
shown to occasionally lead to focusing of energy into later arrivals
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Figure 2. (a) Example of an ‘MF’ wave, in which the maximum amplitude is achieved by the first wave, as recorded by DART buoy number 46408 (blue
square in (c)) during the 2011 Tohoku tsunami. (b) Example of ‘MD’ wave, in which the maximum is carried by a later arrival, as recorded by DART buoy
32413 (red square in (c)) during the Tohoku tsunami. (c) Map of DART records available for the 2011 Tohoku tsunami, colour-coded according to sequencing
(blue for MF paths; red for MD ones). Ray paths are idealized as great circles, rather than actual paths resulting from irregular bathymetry and the presence of
continental and island structures. (d) Same as (c) for the 2010 Maule, Chile tsunami.

which may feature larger amplitudes than initial ones (e.g. Kowalik
et al. 2005; Rabinovich et al. 2011; Titov et al. 2005). Similarly,
our approach excludes the potential effect of reflection by promi-
nent bathymetric features such as large islands or oceanic plateaux,
which can lead to large-amplitude delayed arrivals, as described, for
example, by Shevchenko et al. (2013) at Severo Kuril’sk during the
2010 Chilean tsunami.

In Section 3, we apply this concept and confirm our results in
the real-life cases of realistic earthquake-generated tsunamis, and
further document the influence played by irregular bathymetry on
the transition from MF to MD regimes.

2 S E Q U E N C I N G I N C L A S S I C A L
A NA LY T I C A L S O LU T I O N S

In order to gain as much insight as possible into the origin of
sequencing, we first work on simple cases for which analytical
solutions are available. We use the model of an ocean of constant
depth h, which eliminates any possible effect of multipathing and
refraction due to lateral heterogeneity in propagation. The curvature
of the Earth is neglected and the medium has no lateral limits.

2.1 Le Méhauté & Wang’s (1995) formalism

We start by considering the approach of Le Méhauté & Wang (1995;
hereafter LMW), who expand the solution of a linear irrotational
wave propagating from a finite disturbance with axial symmetry as

η(r, t) =
∫ ∞

0
k · J0(kr ) · H(k) · cos ωt dk, (1)

where ω is the angular frequency of the spectral component with
wavenumber k:

ω2 = gk · tanh(kh), (2)

Jν the Bessel function of first kind and order ν and H(k) is the
Hilbert transform of the initial displacement of the water surface at
the origin time t = 0:

H(k) =
∫ ∞

0
η(r ′, 0)J0(kr ′)r ′dr ′. (3)

We consider here a ‘top hat’ distribution

η(r ′, 0) = η0 · H (r0 − r ′), (4)

where H is the Heaviside function. This model describes the in-
stantaneous uplift (by an amount η0) of a circular plug of radius
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Figure 3. Examples of waveshapes synthesized from eq. (5) (Le Méhauté and Wang 1995) at short and large distances (30 km, top, and 500 km, bottom,
respectively). Note the transition from MF to MD patterns.

r0 at time t = 0. Substituting (4) into (3) leads to the general
solution

η(r, t) = η0 · r0

∫ ∞

0
J0(kr )J1(kr0) · cos ωt dk. (5)

Note that because of the existence of two independent scaling
lengths in the problem (namely the radius r0 of the plug and the
depth h of the oceanic column) and of the non-linearity of the
dispersion relation (2), eq. (5) does not lend itself to simple non-
dimensionalization and the evolution of sequencing is not expected
to be simply a function of r/r0.

Note also that our approach differs from that of previous investi-
gators, (e.g. Kajiura 1963), who considered the more complex (but
admittedly more realistic) case of a rectangular fault, and who was
primarily concerned with the evolution of maximum amplitude η

with range r, irrespective of the problem of sequencing.
On Fig. 3, we present two examples of waveforms η obtained by

numerically computing eq. (5) at distances r = 30 and 500 km for
the following parameters: h = 4 km; r0 = 10 km; η0 = 1 cm. This
figure clearly establishes the former as an MF wave, and the latter
as an MD one. Note on this figure that, as predicted by the N-wave

model of Tadepalli & Synolakis (1996), sequencing does not affect
the polarity of the first arriving waves (a leading elevation in both
cases); only the distribution of amplitude among subsequent waves
is affected.

A more systematic variation of the range r confirms the trend and
establishes that the transition, when the first and second waves have
equal amplitudes, occurs at a critical range rc = 135 km. We gener-
alize these results by first varying r0, the other parameters remaining
constant. Fig. 4 gives a summary of the results, colour-coded ac-
cording to sequencing (MF wave trains in blue; MD ones in red).
Note that for all values of r0, the evolution of sequencing is from
MF patterns at short distances to MD ones at greater distances. The
critical distance rc (open symbols on Fig. 4) can be approximated
by its regression as a function of r0:

log10 r (4)
c = 3.243 log10 r0 − 1.105, (6)

where rc and r0 are in km and the superscript (4) refers to the case
of a 4-km depth ocean; the rms residual is σ (4) = 0.02 logarithmic
units.
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Figure 4. Summary of sequencing of LMW solutions (5), for h = 4 km.
For each combination of r0 and r, a colour-coded dot (MF in blue; MD in
red) is plotted using logarithmic coordinates. The open symbols (linked by
the dashed line) represent for each value of r0 the critical range rc at which
the character of sequencing changes from MF to MD. The straight line is
the best linear fit (6) to log10rc versus log10r0.

The influence of the depth of the ocean is examined on Fig. 5(a),
where the depth h has been halved (h = 2 km). The new regression,

log10 r (2)
c = 3.174 log10 r0 − 0.357 (7)

(σ (2) = 0.02), has a slightly less steep slope than (4), which suggests
that, while rc is very roughly multiplied by 4 from the case h = 4 km,
the increase is not strictly linear, with ratios varying from 4.6 for
small r0 to 4.1 around 30 km. Note that in this case, we restrict
r0 to a maximum of 30 km, since the corresponding rc becomes
larger than 25 000 km. Similarly, we consider on Fig. 5(b) the case
of a hypothetical ocean with double the standard depth, h = 8 km.
While this is obviously unrealistic in the real Earth, it can help shed
some general light on the dependence of sequencing on h. Again,
the regression

log10 r (8)
c = 2.836 log10 r0 − 1.194 (8)

has a gentler slope than (6), but the curvature is clearly more im-
portant (σ (8) = 0.15) with ratios r (8)

c /r (4)
c varying from 0.24 at r0 =

50 km to 0.86 (practically unchanged) at r0 = 5 km.
These results can be regrouped by fitting the following linear

relationship between the logarithms of h, r0 and rc (all expressed in
km):

log10 rc = 3.063 log10 r0 − 2.058 log10 h + 0.375, (9)

with a global rms value of σ = 0.11 logarithmic units. From
the standpoint of dimensionality, note that the algebraic sum
of the slopes in (9) approaches unity, suggesting a dependence of
the form

rc = Ar0 ·
(r0

h

)a
(10)

with a ≈ 2.0. The simplicity of this result warrants deeper physical
understanding.

2.2 A model to explain eq. (10)

Fig. 6 shows spectrograms of the representative time-series shown
on Fig. 3, and computed under the LMW formalism. The black
curve on each frame expresses the dispersion expected from (2).
It is clear that strong dispersion is present in the early phases of
the wave train at the larger distance, giving it an MD character
(and indeed, it was already apparent in the time domain on Fig. 3).
By contrast, at the shorter distance featuring an MF wave train,
dispersion is present, but not readily discernable as it takes place
within the first oscillation of the time-series.

This observation provides a very strong hint that sequencing may
be controlled by dispersion taking place in the initial phases of the
wave train at the distance rc. Under linear dispersive theory, we
write the dispersion as a function of the variable ξ = kh:

ω2 = gk · tanh(kh) = g
h

· ξ · tanh(ξ ) (11)

which leads to the following expressions for ω, and the phase and
group velocities, c and U:

ω =
√

g
h

·
√

ξ · tanh ξ (12)

c = ω

k
= ω

h
ξ

=
√

gh ·

√
tanh ξ

ξ
(13)

U = dω

dk
= h

2ω
· d(ω2)

dξ
= 1

2

√
gh ·

[
tanh ξ + ξ (1 − tanh2 ξ )√

ξ tanh ξ

]

(14)

Note that (11)–(14) are exact expressions under the linear dispersive
theory.

We now take the variable ξ as small (ξ ≪ 1), but not identically
zero (which would be the SWA), and seek the first terms of the
Taylor expansion of (11):

ω2 = g
h

ξ · tanh(ξ ) = g
h

· ξ 2 ·
(

1 − ξ 2

3
+ 2

15
ξ 4

)
, (15)

leading to

ω =
√

g
h

· ξ ·
(

1 − ξ 2

6
+ ξ 4

40

)
;

c = ω

k
=

√
gh ·

(
1 − ξ 2

6
+ ξ 4

40

)
. (16)

As for the group velocity U, it is obtained simply from (16)

U = dω

dk
= h

dω

dξ
=

√
gh ·

(
1 − ξ 2

6
+ ξ 4

40
− ξ 2

3
+ ξ 4

10

)

=
√

gh ·
(

1 − ξ 2

2
+ ξ 4

8

)
. (17)

Dispersion is expressed by the variation of group velocity with
frequency,

dU
dω

= dU
dξ

· dξ

dk
· dk

dω
= h

U
· dU

dξ
, (18)
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Figure 5. (a) Same as Fig. 4 for the shallower ocean, h = 2 km. (b) Same as Fig. 4 for the deeper ocean, h = 8 km.

or

dU
dω

= h√
gh

·
(

1 + ξ 2

2

)
·
√

gh ·
(

−ξ + ξ 3

2

)

= −ξh + O
(
ξ 5

)
≈ −kh2, (19)

in itself an extremely simple result.
For propagation to a distance r, the dispersion expressed by (19)

results in a variation of traveltime t with frequency given by

dt
dω

= − r
U 2

· dU
dω

= − r
gh

· 1
(1 − ξ 2/2)2

· dU
dω

= r
g

· ξ · (1 + ξ 2). (20)

We then make a number of ad hoc assumptions, derived from
a phenomenological examination of a large data set of numerical
computations of LMW’s integral (5):

(i) We assume that the initial wave packet at the distance rc has
a central (angular) frequency ω0, and that the width of this wave
packet is &ω. Note that ω0 may not necessarily be the frequency
corresponding to the absolute maximum spectral amplitude of the
full wave train, but rather the dominant frequency in the initial wave
packet.

(ii) We assume that sequencing, i.e. the transition from MF to
MD, takes place when the duration of dispersion, taken as the prod-
uct of (20) by &ω, reaches some fraction β of the main period
2π/ω0. This means that rc should be given by

rc = 2πβg
ξ (1 + ξ 2) · &ω · ω0

; to first order rc = 2πβg
ξ0 · &ω · ω0

.

(21)

(iii) We further assume that the dominant frequency in the early
phases of the wave train, T0 = 2π/ω0, is related to the time it takes
a long wave to transit through the source,

T0 = γ
r0√
gh

; ω0 = 2π

γ

√
gh

r0
, (22)

where γ is a constant of order 1, which is simply the ratio of the
dominant wavelength *0 to r0.

(iv) Finally, we make the assumption that &ω is itself propor-
tional to ω0:

&ω = δω0. (23)

Combining (21)–(23) leads to the final expression for rc:

rc = βγ 3

4π 2δ
· r 3

0

h2
, (24)

which is exactly the form of eq. (10) with a = 2. We have ver-
ified that forcing the slopes in regression (9) to their values in
(24) (3 and −2) leads to a quality of fit not significantly dif-
ferent from that in (9) where the slopes are not constrained (σ
= 0.111 as opposed to 0.109 logarithmic units). We conclude
that the data set of critical sequencing distances rc obtained us-
ing the LMW formulation agrees with the simple model described
above. It is more difficult to interpret the locking constant obtained
from the forced regression (0.414 instead of 0.375 in (9)), which
requires

βγ 3

4π 2δ
= 2.60, (25)

but we note that it remains of order 1, which is generally consistent
with our model.
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Figure 6. Spectrograms of the wave trains shown on Fig. 3. Top: MF wave train at short range (r = 30 km). Bottom: MD wave train at large range (r =
500 km). Note the different timescales on the horizontal axes. In each frame, the solid black line expresses the dispersion expected under eq. (8). Note that
while dispersion is present in both frames, it is not directly discernable inside the initial wave packet at the shorter distance.

In order to further verify the general validity of our model,
we investigate independently the relationship between ω0 and the
parameters of the source, r0 and h. For this purpose, we analyse
the synthetic records computed using LMW’s integral (5) for the
three depths h = 2, 4, 8 km and for values of r0 ranging from 5
to 50 km (30 km for h = 2 km). For each combination, the com-
putation is made at the critical distance rc. We define the dominant
period in the initial wave packet by considering the first minimum in
the time-series (for positive η0, it is our experience that this is also
the absolute minimum of the whole time-series). This minimum
occurs at a group time tmin, which corresponds to a group velocity

Umin = rc/tmin that can be numerically inverted into a parameter ξmin

using the exact eq. (14), and then into the parameter ω0 using (11).
A double logarithmic regression of a set of 28 such measurements
shows that the dominant period T0 = 2π/ω0 can be approximated
by

log10 T0 = 0.944 log10 r0 − 0.442 log10 h + 1.673 (26a)

log10 ω0 = −0.944 log10 r0 + 0.442 log10 h − 0.875, (26b)

where T0 is in seconds (ω0 in rad s−1), r0 and h in km and with an
rms residual σ = 0.05 logarithmic units.
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Note that the regression slopes in eq. (26a) are remarkably close
to the values assumed in our model (1 and –0.5, respectively).
If the slopes are forced to those values, the best-fitting constant
in (26a) becomes 1.643, which in turns leads to γ = 4.3. This
remark provides an a posteriori justification of our assumption
by suggesting that T0 may simply be close to the time 4r0/

√
gh

required for a round trip across the circular source plug under the
SWA. The expression of the dominant period (26) is also in general
agreement with the proportionality of wavelength with source size
(e.g. Mirchina et al. 1980), even though these authors considered
the more complex case of a source of elliptical shape.

Furthermore, our result (24) can be compared to the ‘charac-
teristic distance for dispersion’ obtained by Mirchina & Pelinovsky
(1982, eq. 13), which, when combined with Mirchina & Pelinosky’s
(1980) scaling of wavelength to source size, takes the form 1.32
r 3

0 /h2, the constant 1.32 being roughly one-half of the ratio (25);
this agreement can be regarded as excellent given these authors’
cautionary note regarding the selection of the constant, and more
generally the fact that a change in sequencing into an MD pattern
may require a more fully dispersed wave train and hence a greater
range r than would the mere observation of dispersion.

2.3 Hammack’s (1972) approach

Another, somewhat different, analytical solution to the general prob-
lem of the wave propagating from an initial disturbance under axial
symmetry was given by Hammack (1972, hereafter JLH). Specifi-
cally, his approach considers the problem of the tsunami generated
by the uplift (in an amount ζ 0) of a circular plug of radius r0 on the
ocean floor:

ζ (r ; t) = ζ0(1 − e−αt ) · H (t) · H (r0 − r ), (27)

where 1/α is the time constant of the source and H the Heaviside
function. Hammack (1972) used linear dispersive theory to solve
the wave equations with (27) as a boundary condition. Note that the
finiteness of the coefficient α implies that (27) is not stricto sensu
an ‘initial’ condition, the difference becoming meaningful for very
small values of α (large values of the rise time); furthermore it will
result in a field of ‘initial’ surface particle velocities which is not
identically zero (for any strictly positive time t, even smaller than
1/α, these velocities will already be non-zero, while the motion of
the bottom is still going on). This constitutes a fundamental dif-
ference between LMW’s approach which uses the initial condition
(4) at the surface of the ocean rather than JLH’s boundary condi-
tion (27) at the bottom, and in this respect, the JLH approach may
be more appropriate than LMW’s to model tsunamis generated by
earthquake sources, since it does not implicitly assume an imme-
diate deformation of the ocean surface. In a sense, this had to be
expected since LMW developed their model in the framework of
investigating tsunamis generated by underwater explosions rather
than earthquakes.

Hammack (1972, eq. 3.106, p. 68) derived the following ana-
lytical solution for the sea-surface amplitude η at distance r and
time t:

η(r ; t) = −ζ0r0

∫ +∞

0

J0(kr )J1(kr0)
cosh(kh)

· α2

ω2 + α2

·
[
e−αt − cos ωt − ω

α
sin ωt

]
· dk, (28)

where ω is again given by (2).
The difference in boundary/initial conditions between the LMW

and JLH models is expressed by the term cosh (kh) in the denom-

inator of (28). For k → 0, the SWA becomes justified and this
term simply goes to 1, the motion at the surface being identi-
cal to the deformation of the bottom. However, outside the SWA,
this term has the effect of reducing the surface displacement for
a given deformation of the bottom; in simple terms, earthquake
sources in the Earth are comparatively lower frequency (or red-
shifted) with respect to sources at the water surface. A second
difference between the two approaches is the effect of the finite du-
ration 1/α of the JLH source; this is expressed in (28) through the
term

α2

ω2 + α2
·
[
e−αt − cos ωt − ω

α
sin ωt

]
. (29)

For any time t, (29) goes to −cos ωt when α → ∞, an illustration
of Butkov’s (1968) result that the solution of a forced linear wave
equation becomes mathematically equivalent to that of an initial
condition problem when the characteristic time of forcing goes to
zero.

The sequencing of simulated tsunami waves computed under
the JLH formalism is now examined, following the exact same
strategy as with LMW solutions. An equation numbered (xx)_[yy]
will refer to a substitute (xx) under JLH’s formalism for eq. (yy)
under LMW’s. Our results are shown on Fig. 7, with the follow-
ing individual fits to the critical distance rc as a function of r0

and h:

log10 r (4)
c = 2.505 log10 r0 + 0.041, (30)_[6]

log10 r (2)
c = 2.703 log10 r0 + 0.289, (31)_[7]

log10 r (8)
c = 2.002 log10 r0 + 0.253, (32)_[8]

the combined data set being regressed as

log10 rc = 2.344 log10 r0 − 1.424 log10 h + 1.110 (33)_[9]

(with a global rms value of σ = 0.12 logarithmic units), which this
time argues for a non-dimensional relation of the form (8) with
a ≈ 1.4.

A systematic comparison of the critical sequencing distances
rc under the LMW and JLH formalisms shows that the latter are
an average of 1.87 times greater than their LMW counterparts.
This is easily interpreted, as discussed above, from the conceptual
differences between the two methods. The JLH solutions being
generally lower frequency than the LMW ones, will exhibit less
dispersion, and thus require longer ranges r to reach the critical
sequencing distance rc. However, the above ratio features a lot of
scatter, varying from 1.02 (for a large plug in a shallow ocean) to
6.0 (for a small plug in a deep ocean). This is further illustrated by
investigating the variation of the dominant periods T0 at the critical
distances rc:

log10 T0 = 0.759 log10 r0 − 0.281 log10 h + 1.866, (34a)_[26a]

log10 ω0 = −0.759 log10 r0 + 0.281 log10 h − 1.067. (34b)_[26b]

These dominant periods are found to be generally longer for the
JLH model (by an average of 19 per cent compared to the LMW
one), but less sensitive to the parameters r0 and h, as expressed by
gentler slopes than the theoretical values 1 and −0.5 in (34). This
illustrates the fact that the wave developing under the JLH model
is initially red-shifted with respect to the LMW one, and features a
smoother spectrum.
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Figure 7. Same as Figs 4 and 5 for simulations under Hammack’s (1972) formalism.

Figure 8. Influence of the parameter α on the character of JLH solutions for h = 4 km and r0 = 5 km (left), 10 km (centre), and 30 km (right). Symbols as in
Fig. 4.

Finally, on Fig. 8, we explore the influence on sequencing of
the parameter α whose inverse, 1/α, represents the rise time of the
source. We use three plug radii, r0 = 5, 10 and 30 km, respectively,
and a standard ocean depth of 4 km. We find that in all instances,
α has little influence on rc, as long as it remains large, that is, the
rise time remains small. Specifically, Fig. 8 shows two regimes for
rc. For r0 = 5, 10 and 30 km, rc starts to be affected for 1/α >

3, 6 and 20 s, respectively, suggesting that these thresholds scale
with r0, approximately as (r0/

√
gh)/8, an interpretation being that

for small values of α, the large rise time controls the dominant
frequency T0 and hence the dispersion, while for large values of α,
T0 is controlled by the dimension of the source and is insensitive to
the very short rise time.

2.4 Comparison with Glimsdal et al. (2013)

Our results can be compared to those of Glimsdal et al. (2013),
who have similarly investigated the development of dispersion dur-

ing propagation of tsunami waves. However, these authors consider
‘space series’, that is, the distribution of surface amplitude η as
a function of range r, which amounts to taking a snapshot of the
surface of the ocean at a given time t, while we investigate time-
series η(t) at a fixed position r. Furthermore, they consider clas-
sical dislocation sources which provide a more realistic model of
tsunami generation by earthquakes, but result in a more complex
two-dimensional spatial source spectrum.

In order to explore deeper the relationship between our two fami-
lies of solutions, we plot on Fig. 9 space series of the LMW integral
(1) for a standard depth h = 4 km, a source radius r0 = 20 km
and for times t = 1900 and 12 000 s. Note that we duplicate qual-
itatively Glimsdal et al.’s (2013) observations, for example, their
fig. 5. For short times t, the wave is not dispersed and the maximum
amplitude occurs at the wavefront. For longer times t, dispersion be-
comes evident, and the maximum amplitude η trails the wavefront.
It is possible to define a critical time tc separating the two regimes,
which is found to be 6170 s for this combination of source parame-
ters. Note that the critical distance rc for the same source parameters
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Figure 9. Space series of snapshots of the deformation η computed under
LMW’s formalism (5), but plotted as a function of range r, for times t =
1900 s (top) and t = 12 000 s (bottom). Note the MF character for the shorter
time, and the MD pattern for the longer one.

is predicted at 1301 km by (6), 1321 km by (9) and 1300 km by
(24) and (25), which in turn would correspond to traveltimes of be-
tween 6570 and 6670 s, under the SWA. These numbers agree well
with our estimate of tc, the difference, on the order of the dominant
period T0 (430 s according to (26a) and 440 s when forcing the
regression slopes to −1 and 0.5), expressing the different scope of
the two formalisms (space and time-series) which are not expected
to yield identical critical fields.

In conclusion, our results agree well with Glimsdal et al.’s (2013),
even though they use a different approach and different source
models.

3 S I M U L AT E D S E Q U E N C I N G F O R
R E A L I S T I C S E I S M I C S O U RC E S

3.1 Simulations based on the 2014 Iquique earthquake

In this section, we explore the sequencing of tsunami waves gen-
erated by a conventional seismic source. As a reference, we use
the geometry of the Iquique, Chile earthquake of 2014 April 1, a
moderately large event (M0 = 2.3 × 1028 dyn*cm), and the last
one to have generated a tsunami recorded throughout the Pacific; it
featured a maximum run-up of 4.4 m in the near field. As discussed
more in detail below, we will consider variants of this source to
explore the influence on sequencing of the fault parameters of the
event.

In all cases, we simulate the propagation of the tsunami through
the entire Pacific Basin, in a spherical model of the Earth. Our sim-
ulations use the MOST code (Titov and Synolakis 1998), which

solves the non-linear equations of hydrodynamics under the SWA,
using a finite-difference algorithm and the method of alternating
steps (Godunov 1959). MOST has been fully validated by bench-
marking (Synolakis et al. 2008); all details can be found in Synolakis
(2003).

Our reference case (‘Model 1’) uses the GlobalCMT solution of
the Iquique earthquake (φ = 358◦; δ = 12◦; λ = 107◦). Fault pa-
rameters, listed in Table 1, were derived from the seismic moment
M0 using Geller’s (1976) scaling laws. The static deformation of the
ocean floor is then computed using Mansinha & Smylie’s (1971)
algorithm, and taken to represent the instantaneous deformation of
the ocean surface at time t = 0+. In order to isolate the possible
influence on sequencing of bathymetry and shorelines, we initially
consider an ocean of constant depth h = 4 km, without any islands
or continents. The simulation domain is however limited to a typ-
ical Pacific Basin, covering latitudes 50◦S to 62◦N and longitudes
120◦E to 60◦W (see Fig. 10). Sequencing is investigated through the
computation of times-series of sea surface height η(t) at 677 virtual
gauges distributed at regular azimuths (5◦) and distances (500 km)
from the source.

Fig. 10 shows typical examples of simulated MF and MD times-
series, as well as a map of their distribution (note that the continents
are shown only for orientation; they are absent from the model).
In very general terms, the distribution of sequencing confirms the
trend defined in the previous section: along a given great circle
from the epicentre, wave trains are of type MF at short distances,
and then become MD at greater ones. In the reference case, the
transition takes place at a distance estimated at 1500 km in the
lobe of directivity (we note however a strong azimuthal dependence
of critical sequencing distances which will be examined below).
This distance is both shorter than expected from JLH models for
source radii comparable to W/2 (8500 km using eq. (30)), and
larger than simulated by Glimsdal et al. (2013) in the case of the
comparably sized 1969 Portuguese earthquake (estimated at few
hundred kilometres by comparing the two frames in their Fig. 5;
note however that the steep dip of their solution has the effect of
reducing the projected width of the fault and hence of blue-shifting
the spatial spectrum of their source).

The influence of source parameters on sequencing is further in-
vestigated by varying the fault dimensions. Models 2 and 3 consider
sources scaled down and up, respectively, by a factor of 10 in mo-
ment, using seismic similitude laws (Geller 1976). As shown on
Fig. 11, the ‘SMALL’ source leads to a much faster transition to
type MD, with MF wave trains now constrained to a few short dis-
tances along azimuths approaching the strike of the fault, while for
the ‘BIG’ source, the MD wave trains cover only a very distant range
(≥8500 km) in the centre of the directivity lobe. Models 4–6, in-
vestigated on Fig. 12, are obtained by artificially changing one fault
dimension, outside similitude laws. Specifically, the ‘WIDE’ model
has double the fault width of the reference model while keeping
fault length and seismic slip unchanged, and thus double the seis-
mic moment, the ‘THIN’ model has half the width (and the same
length) for half the seismic moment, and the ‘LONG’ one double the
length and the same width, for double the seismic moment. Fig. 12
confirms that the development of sequencing varies significantly
with the dimensions of the fault.

A simple interpretation of these trends can be given as follows.
Motivated by the results in Section 2, we assume that the critical
sequencing distance for a tsunami generated by a rectangular source
of dimensions length L and width W is controlled by the dominant
wavelength (or period) of the tsunami, which in turn results from a
condition of positive interference among the wavelets generated at
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Table 1. Parameters of models used in numerical simulations.

Model Name Ocean Moment Fault Fault Slip
number model M0 length width (m)

(1028 dyn*cm) (km) (km) (km)

Reference event: Iquique, 2014 April 1
(φ = 358◦; δ = 12◦; λ = 107◦)

1 REFERENCE Flat, No conts. 2.3 147 74 4.3
2 SMALL Flat, No conts. 0.23 68 34 2.0
3 BIG Flat, No conts. 23. 317 158 9.3
4 WIDE Flat, No conts. 4.6 147 147 4.3
5 THIN Flat, No conts. 1.2 147 37 4.3
6 LONG Flat, No conts. 4.6 298 74 4.3
7 TRUE BATHY True bathymetry 2.3 147 74 4.3

Maule, Chile, 2010 February 27
(φ = 16◦; δ = 14◦; λ = 104◦)

8 MAULE Flat, No conts. 19.8 400 112 9.0
9 MAULE True bathymetry 19.8 400 112 9.0

Tohoku, Japan, 2011 March 11
(φ = 193◦; δ = 14◦; λ = 81◦)

10 TOHOKU Flat, No conts. 39.5 350 80 28.3
11 TOHOKU True bathymetry 39.5 350 80 28.3

Figure 10. MOST simulations for the earthquake reference source (2014 Iquique earthquake; Model 1). Top: examples of MF and MD wave trains. Bottom:
distribution of virtual gauges, colour-coded according to nature of sequencing (MF in blue; MD in red). The locations of Gauges 51 and 315, illustrated in the
top frames, are outlined. Note that this simulation involves a totally flat ocean bottom; the continents are absent from the model and are drawn here only for
orientation. See the text for details.
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Figure 11. Distribution of MF (blue) and MD (red) simulated time-series generated by Models 2 (‘SMALL’; top) and 3 (‘BIG’; bottom), for a flat ocean bottom
with no continents.

the various elements of the fault plane, as described conceptually
by Ben-Menahem & Rosenman (1972). Following Yamashita &
Sato (1974) and more recently Rabinovich (1997), we expect the
fundamental dominant period to be given by

T = 2D√
gh

, (35)

where D is a critical fault dimension controlling constructive inter-
ference. In the axis of the lobe of directivity, that is, at right angle

from the fault strike, D = W cos δ, where W is the fault width and δ

the dip angle of the fault, as verified, for example, by Abe (2006) in
the case of the 2004 Sumatra tsunami. For a shallow dipping thrust
event, D ≈ W. As W (hence D) increases, the dominant wavelength
will increase, and so will the critical sequencing distance, which it
controls. Moving in azimuth away from the directivity lobe, the ap-
parent size of the source in the direction of propagation will increase
(we have verified that indeed, the dominant period T in the simu-
lated tsunami time-series increases), with the result that the critical
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Figure 12. Same as Fig. 11 for Models 4 (‘WIDE’; top left), 5 (‘THIN’; top right) and 6 (‘LONG’; bottom).

sequencing range will increase as well. By contrast, the effect of
the fault length L would be concentrated in the direction of fault-
ing, which does not sample the open ocean in real-life situations in
the Pacific Basin. These simple arguments explain, at least qualita-
tively, the main characteristics of the sequencing patterns expressed
on Figs 10–12, namely the growth of the critical sequencing range
with width W, less so with length L, and with increasing azimuth
away from the centre of the directivity lobe.

We next consider in Model 7 the same source as in Model 1, that
is, the reference 2014 Iquique earthquake, but run the simulation
for the real bathymetry of the Pacific Basin, including its continen-
tal and island shores. As shown on Fig. 13, the distribution of MF
versus MD waveforms follows the same trend as for the flat bot-
tom case (Fig. 10), that is a transition to the MD regime at greater
ranges, but the pattern is somewhat more erratic, with small-scale
heterogeneities probably expressing the influence of secondary ar-
rivals due to refraction by regional bathymetric features. We also
note that the transition within the lobe of directivity takes place at
a significantly greater range; this reflects the young age and hence
the shallow depth of the Pacific floor in the Nazca plate, and would

agree, at least qualitatively, with the dependence of rc on h derived
in eq. (24).

3.2 The case of the two major 2010 Maule and 2011
Tohoku tsunamis

Finally, on Fig. 14, we show the distribution of sequencing for
simulations of the two large events of 2010 (Maule, Chile, left)
and 2011 (Tohoku, Japan, right). For a flat bathymetry without
continents (top), the general characteristics of our previous models
are reproduced, with the MD patterns developing only at large ranges
(≥7500 and 4000 km, respectively), in the lobe of the radiation
pattern, the smaller critical range for the Tohoku tsunami expressing
the more compact dimensions of its source. The patterns become
more scattered in the case of the real bathymetry (bottom), with a
lessening of the azimuthal impact and an opposite effect on critical
range: the latter is generally increased significantly for the Maule
event (as it was for the Iquique event—see Figs 10 and 13), but
remains essentially unchanged in the Tohoku case. This disparity is
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Figure 13. Distribution of virtual gauges, colour-coded according to nature of sequencing (MF in blue; MD in red) for the reference Iquique earthquake source,
using the real bathymetry of the Pacific Basin, continents and islands.

tentatively explained by the presence of shallow bathymetry, leading
to longer ranges rc according to (24), along the early parts of the
Maule paths in the Nazca plate and across the East Pacific Rise, as
compared to deep and relatively smooth bathymetry in the Western
Pacific in the Tohoku case.

On Fig. 14, we re-plot the individual DART measurements com-
piled on Fig. 2, allowing for a direct evaluation of the success of
our simulations in predicting sequencing as recorded in real life.
For the Maule event, the flat-bottom, no-continents Model 8 cor-
rectly predicts 10 out of 16 gauges, with 4 clear violations, one
DART gauge at the boundary between the two regimes, and one in
an area where no virtual gauges were deployed. In Model 9, using
real bathymetry, 14 out of 16 are correctly predicted, with still one
gauge at the regime boundary (incidentally, reversed from Model
8) and one uncovered. For the Tohoku tsunami, Model 10 (flat)
correctly predicts 15 out of 24, with eight clear violations and one
gauge close to the pattern boundary. Under Model 11 (with real
bathymetry), these numbers become 15 correct predictions and 9
gauges at pattern boundaries.

While the match between predicted and observed sequencing
is not perfect, it is however highly satisfactory, since most of our
unpredicted gauges are located near the boundaries of sequencing
regime, where the eventual pattern (MD versus MF) may be con-
trolled by subtle small-scale heterogeneities in bathymetry. This is
clearly the case for the lone gauges wrongly predicted in Model 9,
where the pattern of sequencing is inverted at the Kermadec DART
site with respect to the flat-bottom Model 8. In the less satisfactory
case of the 2011 Tohoku tsunami, we note that our simulation uses
a simplified model of earthquake rupture featuring a homogeneous
slip on the fault. A more sophisticated model, taking into account
the strongly heterogeneous seismic slip featured by this event (e.g.
Ammon et al. 2011; Fujii et al. 2011) would result in blue-shifting
of the wavefield, which in turn would predict a stronger dependence
on small-scale bathymetry.

As a conclusion of our set of simulations, we present on
Fig. 15 the time-series simulated under Model 11 at virtual gauge
450, the closest one to the island of Tahiti, where Fig. 1 was
obtained. While not reproducing all the details of the maregram
in Fig. 1, it clearly qualifies as an MD pattern, and the time
lag between the arrival of the first wave and the absolute max-
imum (one hour) compares favourably with the observation on
Fig. 1.

We emphasize that a detailed comparison between Figs 1 and
15 is not warranted, in view of a number of simplifications inher-
ent in our simulation: gauge 450 (20.55◦S; 150.06◦W) is located
330 km South of Papeete, which remains within a typical wave-
length of the main wave packet; however the record on Fig. 1 was
obtained at a maregraph located in Papeete harbour, where the wa-
ter depth is estimated at 20 m (Reymond et al. 2012). Despite the
fact that Papeete harbour features a relatively simple topography
and thus does not lend itself to extreme non-linear amplification of
tsunami waves, a detailed simulation of the record on Fig. 1 would
require fine-scale resolution of the local bathymetry around the is-
land of Tahiti, and into the harbour itself, as well as a similarly
finer local computational grid, and thus transcends the scope of this
paper, which is simply to identify the physical parameters control-
ling the evolution of sequencing. In this context, our comparison
of Figs 1 and 15 simply serves the purpose of confirming that the
general physical agents identified in the previous sections as con-
trolling the evolution of sequencing remain the main contributors
to the late arrival of the maximum amplitude in Papeete during the
2011 tsunami, as experienced by the first author under operational
conditions.

Finally, we note that the general evolution from MF to MD scenar-
ios as distance increases was specifically identified by Rabinovich
& Thomson (2007) on a data set of tidal gauge records of the
2004 Sumatra–Andaman tsunami. However, as mentioned above,
such records can be strongly affected by the non-linearity of these
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Figure 14. Simulations of the 2010 Maule (left) and 2011 Tohoku (right) using a flat bathymetry with no continents (top) and the real Pacific Basin bathymetry
(bottom). Sequencing at each virtual gauge is shown in blue (MF) or red (MD). Superimposed on each frame are the data recorded at DART buoys from Fig. 2
(triangles).

Figure 15. Simulation under Model 11 (Tohoku tsunami; real bathymetry)
at virtual gauge 450, closest to Papeete, Tahiti.

instruments, and by the response of the harbours where they are
deployed. Nevertheless, our results suggest that the main origin of
this evolution in sequencing in the 2004 data set is attributable to
dispersion.

3.3 Validating the use of MOST

All above simulations were carried out using the MOST algorithm,
which is intrinsically non-dispersive, since it solves the equations
of hydrodynamics under the SWA. In this respect, it may appear
surprising that this algorithm, when used with a flat-bottom ocean
eliminating the effects of focusing and multipathing, should be capa-
ble of reproducing the general trends of sequencing patterns defined
in Section 2, and attributed to the effect of dispersion expressed by
(2) outside the SWA.

This apparent paradox is resolved in the framework of Burwell
et al.’s (2007) discussion of the numerical diffusion and dispersion
induced into the MOST algorithm by the process of discretization.
These authors show that the process is controlled by the ratio:

βBTC =
√

gh · &t
&x

, (36)

where &t and &x are the temporal and spatial sampling rates, re-
spectively (we use the notation βBTC to represent these authors’
parameter β, since it is unrelated to β defined in eq. (21)). We
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recall that the Courant–Friedrichs–Lewy stability condition requires
βBTC < 1 (Courant et al. 1928); in the present simulations, we use
values βBTC varying from 0.5 (for latitudinal steps and equatorial
regions) to 0.9 for longitudinal steps at high latitudes; an average
of βBTC = 0.7 ≈ 1/

√
2 allows a direct comparison with Burwell

et al.’s (2007) fig. 11, which shows that the artificial numerical dis-
persion in MOST reproduces the theoretical dispersion (2) of linear
wave theory outside the SWA, for all wavenumbers satisfying k ·
&x ≤ 1.5, or in the case of our simulations, wavelengths greater
than about 15 km, or periods greater than 75 s, which is clearly
the case of all legitimate seismic sources of transoceanic tsunamis.
This explains why MOST simulations can effectively predict the
sequencing patterns shown in Section 2 to evolve from dispersive
effects. In this context, the comparison of the top and bottom frames
of Fig. 14 shows that the development of MD patterns cannot be
simply attributed to irregularities in bathymetry.

4 C O N C LU S I O N

Our examination of hypothetical solutions comprising both instan-
taneous circular surface sources and time-dependent seafloor dis-
placements has established the existence of a critical distance rc at
which sequencing of tsunami waves in the far-field transitions from
an ‘MF’ pattern in which the maximum sea surface amplitude is
carried by the first arriving leading elevation, into an ‘MD’ wave-
shape where the maximum crest is delayed until a later oscillation
in the primary wave packet. In the simplified case of cylindrical
waves generated by an instantaneous ‘top-hat’ uplift of the ocean
surface, we have derived the simple expression

rc = 2.60 · r 3
0

h2
(37)

for scaling rc to source radius r0 and ocean depth h. This expression
can be justified by assuming that sequencing derives from frequency
dispersion inside the primary wave packet, as the width of its spec-
trum around its dominant period T0 becomes dispersed in time in
an amount comparable to T0, the latter being itself controlled by a
combination of source size r0 and ocean depth h.

In very simple terms, the power law exponents (3 and 2) in (37)
may be understood by noting that it can be rewritten as

rc = β

δ
· *0 · 1

ξ 2
0

, (38)

where the denominator ξ 2
0 is, according to (17), a measure of the

relative effect of dispersion on the group velocity, at the dominant
wavelength *0; then rc scales directly with *0 (and hence r0),
divided by this non-dimensional parameter.

In the case of sources rapidly uplifting the ocean floor, the critical
distance rc remains comparable to (37) for rapid sources, but be-
comes larger for slower sources, reflecting the general red-shifting
of the wave’s spectrum.

Models involving realistic earthquake sources confirm the tran-
sition from MF patterns to MD ones at larger ranges, with fault
width W having a greater influence than fault length L on the criti-
cal distance and propagation outside the lobe of directivity further
increasing the critical distance. The presence of laterally variable
bathymetry, including continent and islands, further affects the se-
quencing of tsunami waves in the far field by generating focusing,
defocusing and multipathing of tsunami rays in the oceanic basin,
without however modifying the main patterns of the sequencing
distribution.

Simulations of the two largest recent transoceanic tsunamis (2010
Maule, Chile and 2011 Tohoku, Japan) reveal similar patterns, and
accurately predict the distribution of sequencing at the majority of
the DART buoys having recorded these two events, which inciden-
tally confirms that delayed arrivals observed at coastal stations are
not (or at least not entirely) due to site effects involving the non-
linear response of bays and harbours. Our 2011 simulation at the
virtual gauge closest to Papeete also predicts an MD pattern, with
an absolute maximum delayed on the order of one hour, as recorded
in real time by the harbour maregraph.

In this context, we stress that our results do not necessarily imply
that the sequencing transition from MF to MD regimes will change
inundation amplitudes estimated by codes solving non-linear shal-
low water equations, if their numerical characteristics are similar to
those used, for example, by the MOST algorithm, as also argued by
Synolakis & Kânoǧlu (2015). We note in particular that the ampli-
tude of the delayed maximum at the tidal gauge record shown on
Fig. 1 (and acceptably reproduced on Fig. 15) had been correctly
predicted under operational conditions based on algorithms using
SWA codes (Reymond et al. 2013).

While not pretending to explain all details of the time-series
recorded in the far field from a major tsunami, our study provides
a theoretical framework identifying the main agents governing the
evolution from maximum first to maximum delayed regimes, in
the context of the scaling of the seismic source. From an oper-
ational standpoint, it brings analytical support to the need for a
precautionary attitude in emergency management, re-emphasizing
that arrival times announced as part of tsunami warning dispatches
refer to the initiation of the phenomenon, while its full develop-
ment may delay the most dangerous parts of the wave for a few
hours. Populations at risk must be educated in this respect, if one
is to prevent repeating the tragedies in Hilo (1960) or Crescent
City (1964).

A C K N OW L E D G E M E N T S

CES acknowledges partial support from the National Science Foun-
dation under grant CMI-15-38624 to the University of Southern
California and from Project ASTARTE funded under the 7th Frame-
work Programme for Research and Technological Development of
the European Union, under grant 603839 to the Technical Univer-
sity of Crete. EAO acknowledges partial support from the National
Science Foundation under subcontract from the University of Pitts-
burgh’s grant number OCE-13-31463. The paper was significantly
improved by the comments of Alexander Rabinovich and another
reviewer.

R E F E R E N C E S

Abe, K., 2006. Dominant periods of the 2004 Sumatra tsunami and the
estimated source size, Earth Planet Space, 58, 217–221.

Admire, A.R., Dengler, L.A., Crawford, G.B., Uslu, B.U., Borrero, J.C.,
Greer, S.D. & Wilson, R.I., 2014. Observed and modeled currents from
the Tohoku-oki, Japan and other recent tsunamis in Northern California,
Pure appl. Geophys., 171, 3385–3403.

Ammon, C.J., Lay, T., Kanamori, H. & Cleveland, M., 2011. Rupture model
of the 2011 off the Pacific coast of Tohoku earthquake, Earth Planet
Space, 63, 693–696.

Ben-Menahem, A. & Rosenman, M., 1972. Amplitude patterns of tsunami
waves from submarine earthquakes, J. geophys. Res., 77, 3097–3128.

Burwell, D., Tolkova, E. & Chawla, A., 2007. Diffusion and dispersion
characterization of a numerical tsunami model, Ocean Model., 19,
10–30.



Sequencing of tsunami waves 735

Butkov, E., 1968. Mathematical Physics, 735 pp., Addison-Wesley.
Courant, R., Friedrichs, K. & Lewy, H., 1928. Über die partiellen Differen-
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