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Abstract—Motivated by the generation of exceptionally large

gravito-elastic waves during the Hunga Tonga–Hunga Ha’apai

explosion of 15 January 2022, we examine theoretically the nature

of the main air wave branch GR0; whose undispersed celerity,

� 313 m/s, suggests that it may represent a ‘‘tsunami’’ of the

atmospheric column for an effective thickness Heff � 10 km.

However, we find that its potential energy is about 90% elastic

across a wide frequency band, thus negating the widely held per-

ception that it constitutes an oscillation between kinetic and

gravitational energy. Based on the systematic study of the effect of

finite compressibility on the dispersion and potential energy of a

classic oceanic tsunami, we confirm that this feature of the branch

GR0 stems from the similarity between its celerity and the average

speed of sound in the atmosphere. We then show that this similarity

is not fortuitous, but rather expected for a perfect gas, which, we

conclude, cannot sustain ‘‘tsunamis’’, i.e., oscillations between

kinetic and gravitational energy.

Keywords: Ocean coupled air waves, tsunamis, 2022 Tonga

explosion.

1. Introduction and Background: Are GR Modes

the ‘‘Tsunamis’’ of the Atmosphere?

The explosion of the Hunga Tonga–Hunga

Ha’apai (hereafter Tonga) volcano on 15 January

2022 generated gigantic atmospheric gravity waves

recorded worldwide as barometric signals with

amplitudes of a few hPa, including after circling the

Earth several times at group velocities of � 313 m/s

(e.g., Carvajal et al., 2022; Gusman et al., 2022).

Because they are mostly concentrated in the atmo-

spheric shell surrounding the Earth, such waves can

be regarded as intrinsically guided by that structure,

and fall within the general family studied by Lamb

(1910; hereafter L10), to the extent that they are

generally called ‘‘Lamb waves’’. However, due to the

finite elasticity of both the solid Earth and the oceanic

column, they can couple to these media, including

over essentially enclosed seas such as the Mediter-

ranean, and thus were also recorded worldwide by

seismic stations on land, marigraphs in ports, and

ocean-bottom sensors on the high seas (Okal, 2022).

In historical times, natural predecessors to the

Tonga air waves have followed the Krakatau explo-

sion of 27 August 1883 (Ewing & Press, 1955), and at

reduced amplitudes, the 1908 Tunguska meteorite

explosion (Ben-Menahem, 1975), or even very large

earthquakes, such as the 1964 Alaskan one (Okal &

Talandier, 1991). In particular, Whipple (1930)

noticed the agreement, in the range 310–320 m/s,

between the air wave celerities observed during the

Krakatau and Tunguska events, thus establishing

their common physical nature. In addition, the large

1961 atmospheric nuclear tests over Novaya Zemlya,

culminating with a 57-Mt explosion on 30 October

1961, also generated comparable waves (e.g., Donn

& Ewing, 1962; Press & Harkrider, 1962; Wexler &

Hass, 1962); even the first Soviet thermonuclear test,

with a moderate yield of 3 Mt (22 November 1955),

produced Lamb waves detected in Japan (Yamamoto,

1957). In this context, the 2022 Tonga explosion

revived interest in the general properties of acoustic-

gravity waves in the atmosphere.

From a theoretical standpoint, the study of

atmospheric oscillations can be traced back to

Laplace (1805, Chapter 5), with further landmark

contributions by L10, Taylor (1937) and Pekeris

(1937), who provided theoretical interpretations of

the observed wave celerity, then taken as 318 m/s.
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However, most of these early studies focused on

seeking a resonant response of the atmosphere to the

forcing of the Earth by lunar and solar tides.1 In

addition, Laplace (1805) substantially simplified the

problem by assuming for example that the particle

displacement in the atmosphere was purely horizon-

tal. While L10 later recognized such shortcomings,

he kept the name ‘‘longitudinal waves’’, and himself

retained debatable assumptions regarding the struc-

ture of the ‘‘Lamb wave’’, which will be discussed in

Sect. 4.

After Ewing and Press (1955) first proposed the

atmospheric nature of far-field marigraphic signals of

the Krakatau explosion, Press and Harkrider (1962)

used the context of atmospheric nuclear tests to give a

comprehensive theoretical discussion of the various

waves sustained by an atmospheric column, using the

model of the Air Research and Development Com-

mand [ARDC] (Minzner et al.,1959; Wares

et al.,1960), terminated by a free surface at an alti-

tude of 220 km (their Figure 8, p. 3898, reproduced

as Figure 2 of Harkrider & Press, 1967).

We recall these concepts in some detail since they

provide the general framework of the waves observed

during the Tonga explosion. As detailed, e.g., by

Harkrider (1964) and in very simple terms, atmo-

spheric air waves fall into two categories: S and GR

modes. In the former, the restoring force upon

mechanical deformation is purely elastic, and such

acoustic modes can exist even in the absence of

gravity, hence the label S (for ‘‘sound’’). S modes are

found to be strongly dispersed, mainly due to the

irregular variation in sound velocity with height, a

property physically equivalent to the dispersion of

seismic Rayleigh waves in a layered Earth.

By contrast, the GR modes exist only for a grav-

itating model (Harkrider & Press, 1967, p. 153) in

which the restoring force is, as least partially as we

will show, of a gravitational nature, hence the GR

label. These modes, especially the fundamental

branch GR0 (Harkrider, 1964), exhibit very little

dispersion at frequencies lower than the Brunt–

Väisälä frequency fBV (also known as the buoyancy

frequency), which characterizes the bobbing of an

atmospheric particle displaced vertically and adia-

batically in a stable atmosphere (Väisälä, 1925;

Brunt, 1927):

f 2
BV ¼ � g

4 p2

1

q
d q
dz

þ g

a2

� �
ð1Þ

where g is the local acceleration of gravity at altitude

z, q the local density, and a the local sound velocity.

Note that the actual value of the Brunt–Väisälä

frequency in the atmosphere remains to this day

controversial. L10 (p. 543) quotes a value of 5 min

for the period TBV while several textbooks advocate

about double [e.g., 10 min (Gill, 1982, p. 52); 8 min

(Holton, 2004, p. 54)]. Its value for an isothermal

atmosphere at 288 K is 343 s or 5.7 min. In the

ARDC model, the Brunt–Väisälä period TBV is close

to 7 min at the bottom of the atmosphere, features a

minimum of 5.5 min around 80 km, and then rises to

10 min at z ¼ 125 km. This would suggest that the

discrepancy between published estimates may be due

to modeling at various altitudes by different authors.

To our best knowledge, the only experimental mea-

surement of TBV was obtained from the resonant

frequencies of surface waves excited by the 1991

Pinatubo explosion (Kanamori et al., 1994) which

yielded Tac ¼ 275 s = 4.6 min for the acoustic cut-

off period, suggesting TBV ¼ 305 s � 5 min given

the theoretical ratio ðc=ð2
ffiffiffiffiffiffiffiffiffiffiffi
c� 1

p
ÞÞ of the two peri-

ods in an isothermal atmosphere. Preliminary results

from the 2022 Tonga explosion would tend to con-

firm these experimental values.

Theoretical phase and group velocities for the

GR0 mode below fBV are typically on the order of

315 m/s (e.g., Press & Harkrider, 1962), which

clearly identifies the branch as the ‘‘Lamb wave’’, and

agrees with values observed for air waves generated

by the Tonga explosion (e.g., Gusman et al., 2022;

Okal, 2022). Intense coupling between S and GR

modes takes place around fBV :

In this general framework, Press and Harkrider

(1962) and Harkrider (1964) described the GR modes

as gravitational oscillations of a fluid layer (the

atmosphere) bounded by a free surface at its top

(where, in the ARDC model, the density q and bulk

modulus KS have decreased by factors of � 108 at an

1 The interpretation of these early papers is occasionally made

difficult by the then customary use of the word ‘‘tidal waves’’ to

describe tsunamis, i.e., gravitational oscillations of an oceanic mass

which we now understand have nothing to do with tides.
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altitude of 130 km), and, in the absence of an ocean,

an essentially rigid boundary at the bottom, where q
jumps by a factor of about 3000 and KS by more than

105 (in the presence of an ocean, q would still jump

by a factor of 1000 and KS by 104). This model is

conceptually reminiscent of that of the tsunami of an

oceanic layer, and this similarity begs the question

whether the GR modes can be interpreted physically

as the ‘‘tsunamis’’ of the atmosphere, the word

‘‘tsunami’’ being taken to mean a wave propagating

in a fluid layer and featuring an oscillation between

kinetic and gravitational energy.

In particular, in such a context, the undispersed

nature of the GR0 branch in the low-frequency limit

would suggest that it satisfies the long-wave or

‘‘Shallow-Water’’ approximation [hereafter SWA].

Given that the acceleration of gravity, g, varies only

minimally, from 9.81 to 9.40 m=s2 through the

130 km of the model used here, we find that the SWA

interpretation of its constant celerity C � 315 m/s

would lead to an effective height

Heff ¼ C2=g ¼ 10:0 to 10:4 km: ð2Þ

In the case of an atmosphere whose properties, in

particular its density, vary strongly with altitude, it is

impossible to define a priori its thickness, but this

figure (10.2 km on the average) appears reasonable as

an order of magnitude.

Indeed, using the ARDC model, we note that at the

altitude Heff ¼ 10 km, the density is reduced by a

factor 3.2, and that the first 10 km of atmosphere

contribute 78% of the pressure at the solid surface.

More generally, Fig. 1a documents the decay of den-

sity q with altitude. Because of the small thickness of

the dense atmosphere ð� 10 km), and to make the

figure more legible, we use a variable horizontal scale

in this figure and several subsequent ones: the scale is

linear but different in the solid Earth, between altitudes

of 0 and 10 km, and above 10 km. The density q;
scaled to that at the lower boundary of the atmosphere

ðq0 ¼ 1:224 kg=m3Þ is plotted using a logarithmic

scale. It decreases by about 8 orders of magnitude from

bottom to top of the model, but this decay differs in the

lower and upper bands. From 0 to 10 km, log10 q varies

with a slope of �0:047 logarithmic units per km, vs.

�0:068 between 10 and 130 km. Yet another approach

would be to compute the altitude of the center of mass

of the atmosphere, which is found at 7.2 km in the flat-

layered ARDC model, suggesting a value of 14.4 km

for its ‘‘thickness’’. All these remarks support a value of

10 km as a general order of magnitude of Heff : Finally,

we verify that at periods of � 1000 s and with

C ¼ 315 m/s, the proposed thickness Heff � 10 km is

indeed much shorter than a typical wavelength

(315 km), which justifies the use of the SWA.

This general concept of an intrinsic similarity

between atmospheric air waves and the tsunamis of

an oceanic layer is indeed found in the early works of

e.g., L10 or Pekeris (1937). In particular, L10 argued,

in the general footsteps of Laplace (1805), that the so-

called ‘‘longitudinal wave’’ was indeed of the same

nature as oceanic gravitational oscillations (which we

would nowadays call ‘‘tsunamis’’), for a ‘‘virtual

height’’ H (in his notation) which L10 estimated at

the slightly lower value of 27,640 ft. or 8.4 km.

These remarks bring a quantitative legitimacy to

the possibility that GR waves could be interpreted as

the ‘‘tsunamis’’ of the atmosphere. This question

constitutes the subject of this study, which will reach

a negative conclusion, by focusing on a systematic

investigation of the physical nature of the potential

energy exchanged with kinetic energy during their

propagation.

Finally, we note that Pekeris (1939) detailed

properties of higher-order solutions to the dispersion

equations; because their phase velocities are less than

those of the fundamental GR0; they should properly

be called undertones. Harkrider and Press (1967)

showed that the second undertone GR2 can be

effectively coupled to the oceanic layer and thus

contribute to marigrams in the far field. More

recently, Watanabe et al. (2022) have described their

systematic recording following the Tonga explosion

and proposed the name ‘‘Pekeris wave’’ for the GR2

branch, in parallel to the ‘‘Lamb wave’’ descriptor

generally used for GR0:

2. Modeling the GR0 Branch

In this section, we consider the ARDC atmo-

spheric model, coupled to the solid Earth PREM

structure (Dziewonski & Anderson, 1981), with no

oceanic layer. In practice, and to facilitate some
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computations, we truncate the model at an altitude of

130 km (see Fig. 1), where the density of the atmo-

sphere has decreased by a factor of about 108 from its

value at the Earth’s surface. In addition to the density

q plotted on Fig. 1a, Fig. 1b similarly shows the

compressional velocity a (speed of sound) scaled to

the undispersed celerity of the GR0 mode at low

frequencies, C ¼ 315 m/s. While exhibiting signifi-

cant fluctuations, a varies only by a factor of about

two between its minimum (258 m/s at 85 km), and its

maximum (556 m/s at the top of the model). Under

the assumption that the atmosphere is a perfect gas,

this corresponds to a factor of only 4 in absolute

temperature H; which justifies the isothermal models

used by some authors (e.g., Kanamori et al., 1994;

Laplace, 1805; L10).2

We then compute GR modes as a particular case

of the spheroidal modes of the Earth, for a model

including a realistic atmosphere, with or without an

oceanic layer. The general approach for such com-

putations of normal modes was given by Saito (1967)

and implemented in a routine fashion by many

authors, e.g., Kanamori and Cipar (1974). Their

algorithm represents the eigenfunction of the mode as

a 6-dimensional vector yi whose components are

detailed in Appendix 1.

In a landmark study, Ward (1980) showed that

oceanic tsunamis could be described as a particular

branch of spheroidal modes, when the Earth model

includes an oceanic layer. The power of this approach

resides in its ability to automatically solve all prob-

lems of coupling at the ocean-solid Earth interface,

including the effect of any sedimentary layers (Okal,

1982, 1988). Later, and largely motivated by the 1991

Pinatubo eruption, the method was extended to

include atmospheric layers (Lognonné et al., 1998).

An alternative approach is Harkrider’s (1964)

algorithm, based on a Haskell-Thomson propagator

(Haskell, 1953), and written in the framework of a

flat-layered two-dimensional structure composed of

the atmosphere, a possible oceanic column, and a

solid Earth. We have verified that the two approaches

give similar results. We note however that Harkrider

and Press (1967) use the simplifying assumption c ¼

1 for the classical heat capacities ratio, except in the

calculation of the Brunt–Väisälä frequency as a

function of altitude.

We first analyze in some detail the eigenfunction

of the GR0 wave in the absence of an ocean, at a

period T close to 1000 s, by solving the free oscil-

lation of the structure at an angular degree l ¼ 127:

Figure 2a shows the variation of the vertical particle

motion, y1 in the notation of Saito (1967) and

Kanamori and Cipar (1974), scaled to its value at the

bottom of the atmosphere, and using the same plot-

ting conventions as in Fig. 1. After a rapid growth by

4 orders of magnitude in the first 2 km of the atmo-

sphere, it remains practically constant in the next

2 Throughout this paper, we use H for absolute temperature, to

distinguish it from periods T.

Figure 1
a Particle density q as a function of depth (or altitude) for Model

ARDC. The density is scaled to its value at the bottom of the

atmosphere, q0 ¼ 1:224 kg=m3; shown as the grey horizontal

dashed line, and plotted on a logarithmic scale. Depth into the

solid Earth and altitude into the atmosphere are plotted linearly, but

with different scales in the solid Earth (to the left of the red line), in

the lower atmosphere (the first 10 km), and above 10 km (to right

of the green dashed line). b Sound velocity a in the ARDC model,

scaled to the observed celerity of the GR0 branch, C ¼ 315 m/s,

shown as the grey horizontal dashed line
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10 km, and then increases regularly by about 3 more

orders of magnitude at the top of the model consid-

ered. Such large values of particle motion simply

express the rarefaction of the atmosphere whose

density has, by then, fallen by 8 orders of magnitude

(see Fig. 1a): the wave imposes considerable dis-

placements, but only on microscopic masses of air.

Between � 25 and 50 km, the eigenfunction y1 has

nodes and changes sign twice, hence the artificial

irregularities in the logarithmic plot, which mandates

the use of its absolute value. By contrast, the particle

motion y1 simply decreases exponentially—linearly

using a logarithmic scale—inside the solid Earth.

A simpler insight into the structure of the eigen-

function can be gleaned from its component y2

representing the radial stress rrr; shown in Fig. 2b,

and which in fluid layers is simply the opposite of the

overpressure during the oscillation. It is found to be

maximum at the boundary between solid Earth and

atmosphere, and to decrease more regularly with

altitude (or depth in the solid Earth), losing about 6

orders of magnitude from the bottom of the atmo-

sphere to the top of the model at 130 km. In this

respect, y2 appears as a more rational physical

descriptor of the eigenfunction than the vertical dis-

placement y1:

On Fig. 3, we take a detailed look at the structure

of the eigenfunction in the first 20 km of the atmo-

sphere, and especially in the first 10, which reveals

significant departures from that of a classical tsunami

under the SWA. The vertical displacement y1 ðzÞ;
scaled to its value at 10 km, is found to rise sharply in

the first few km of the structure, and hence depart

from the linear dependence predicted under the SWA

(dashed line on Fig. 3a). This behavior is totally

robust when the frequency of the wave is changed in

the domain where the GR0 wave is not dispersed (red,

black and green lines for T � 2000; 1000 and 640 s,

respectively; note that they all plot essentially on top

of each other). Similarly, the horizontal displacement,

l y3 in Saito’s (1967) formalism (see Appendix 1),

would be expected to be constant throughout the

column under the SWA, but is found to increase

slightly with altitude (solid lines with same color

code on Fig. 3b), this deviation being more pro-

nounced at lower frequencies. Such deviations from

the SWA model for a homogeneous liquid layer result

from the density layering in the atmosphere. How-

ever, and most remarkably, the strongest deviation

from that model occurs in the ratio ðl y3=y1Þ which

characterizes the ellipticity of the particle displace-

ment, and in particular the aspect ratio of the surface

motion when computed at the top of an oceanic layer

of thickness HOc:: Under the SWA, it is expected to

take the classical value (e.g., Dean & Dalrymple,

2000, Chap. 4):

l y3

y Top
1

¼ C

xHOc:
¼

ffiffiffi
g

p
T

2p
ffiffiffiffiffiffiffiffiffi
HOc:

p ð3Þ

Figure 2
Eigenfunction of the mode GR0 computed at a period T � 1000 s.

a Vertical particle motion y1; scaled to its value at the bottom of the

atmosphere, and plotted on a logarithmic scale. Plotting conven-

tions as in Fig. 1. Note the growth by about 4 orders of magnitude

between the first 10 km of the structure (dense atmosphere) and its

top (rarefied atmosphere). The two irregularities around 30 km

represent changes of sign in y1: b Same as a for the stress y2

(opposite of the overpressure in the atmosphere), scaled to its value

at the Earth’s surface. Note the more regular decay by 6 orders of

magnitude to the top of the atmosphere

Vol. 181, (2024) On the Nature of Potential Energy in Atmospheric Gravity 5



As shown on Fig. 3b, this discrepancy reaches a

factor of 11.7, which is remarkably constant at the

three frequencies tested (� 0:5; 1, 1.5 mHz). Rec-

onciling this discrepancy would require dividing the

effective thickness of the atmosphere by more than

100, which is obviously totally unrealistic since its

properties have hardly changed at an altitude of 100

m. Our results thus underscore a significant deviation

of the structure of GR0 from that of a genuine

tsunami.

The computation most fundamental to our dis-

cussion is that of the energy of the oscillation.

Expressions for the kinetic and potential energies in

the oscillation, EK and EP; are given, e.g., by Wiggins

(1976, pp. 143–144). In its potential form EP; the

energy is itself the sum of an elastic component EE

and a gravitational one EG: In the case of a fluid

column ðl ¼ 0Þ; these can easily be separated from

the various integrals Is i ði ¼ 3; 4; . . .; 12Þ listed by

Wiggins:

EK ¼ x2

Z rmax

0

q r2 y2
1 þ lðl þ 1Þ y2

3

� �
� dr ð4aÞ

EP ¼ EE þ EG ð4bÞ

EE ¼
Z rmax

0

K ðr y01 þ 2 y1Þ � lðl þ 1Þ y3

� � 2 � dr

ð4cÞ

Figure 3
a Close-up of the structure of the vertical displacement y1 of the eigenfunction of the GR0 branch in the bottom 20 km of the atmosphere,

normalized to its value at 10 km (grey horizontal line), at periods close to 1000 s (black), 2000 s (red) and 640 s (green). Note that the three

curves plot essentially on top of each other. The dashed straight line is the linear dependence expected under the SWA for a classical tsunami.

Note the faster growth of y1 with altitude for the air wave in the deepest (and densest) layers. b Same as a for the horizontal component ðl y3Þ;
also normalized to y1 ¼ 1 at 10 km. The vertical dashed lines are the constant values expected under the SWA. Note the much larger values of

ðl y3Þ for the air wave

Figure 4
Fraction of gravitational energy EG in the potential energy as a

function of frequency along the GR0 branch (solid line; left scale in

percent). Note that it increases only slowly, until the frequency

reaches the domain of coupling with S modes near the Brunt–

Väisälä frequency. The phase velocity of the wave is also very

stable, varying by no more than 0.12% over the same frequency

range (dashed line, scale at right)
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EG ¼
Z rmax

0

�
4pG q r2 y2

1 � 2q ry1 ð2gy1 þ ry05Þ

þ 2 lðl þ 1Þ rq y3 ðgy1 � y5Þ

þ 1

4pG
ðl þ 1Þ y5 þ ry05
� �2

�
� dr

ð4dÞ

where K is the bulk modulus, the prime indicates a

derivative with respect to the radius vector r, and the

eigenfunction components are in the notation of Saito

(1967). Incidentally, the identity EK ¼ EE þ EG can

serve as a quality check for the numerical computa-

tion of the mode. We generally achieved a 99.9% fit

to this equation.

For the mode initially targeted ðl ¼ 127;

T � 1007 s), we find that EE accounts for 90.5% of

EP; and EG for only 9.5%. In other words, the

potential energy of the wave is overwhelmingly

elastic, thus largely negating the concept of GR0

being a ‘‘gravity wave’’. On Fig. 4, we show that this

result is totally robust across the large frequency band

where the GR0 branch is undispersed (from 0.10 to

3 mHz; l ¼ 12 to 410). This result is a direct conse-

quence of the departure of the aspect ratio of particle

motion ðl y3=y1Þ from its value for a genuine tsunami

(see Fig. 3). As shown in Eq. (4), an increase in y3

will contribute a linear change to the gravitational

energy EG but a quadratic one to both its elastic and

kinetic counterparts, EE and EK ; thus increasing the

proportion of elastic energy in EP:

Only when the frequency approaches its Brunt–

Väisälä value (about 2.9 mHz in the lower, denser

atmosphere), does the fraction EG=EP start growing

above 10%. Meanwhile, the phase velocity (dashed

line on Fig. 3) remains remarkably constant,

decreasing by only 0.2 m/s or 0.07% in the frequency

band considered.

On Fig. 5, we further examine the variation of the

ratio of the kernels of EE and EP as a function of

altitude in the atmospheric column (or depth inside

the solid Earth). They are simply the integrands in the

various lines of (4). We find that this ratio remains

very high (greater than 80%) throughout most of the

atmospheric column; it falls below that value only

when the medium becomes rarefied (above 50 km,

where the density has fallen by a factor of 1000). This

means that most of the mass of the atmosphere

oscillates by exchanging kinetic energy with elastic

energy, the contribution of gravity remaining rather

marginal. Only in the uppermost part of the structure

ðz[ 100 km) does the potential energy become pri-

marily gravitational. We also present results at

periods of 3000 and 480 s, respectively, which share

these characteristics.

An interesting point is that the kernel ratio EE=EP

becomes greater than 1 at altitudes z ¼ 24 to 43 km;

this means that the gravitational potential energy

becomes negative, which could appear paradoxical at

first sight. However, as outlined by Dahlen and

Tromp (1998, p. 295), a similar situation takes place

for the Earth’s seismic radial modes. We have

Figure 5
The bottom frame shows the ratio of in situ kernels of elastic and

total potential energy as a function of depth, during the oscillation

of a GR0 mode at T � 1000 s (thick black curve). Plotting

conventions as in Fig. 1. Note the generally high ð[ 80%Þ fraction

of elastic energy, except in the most rarefied sections of the

atmosphere. The robustness of these results is confirmed by

superimposed plots at T � 3000 s (blue line) and 480 s (beige

line). Note the systematic occurrence of values in excess of 100%

around 24–43 km (see text for discussion). The top frame plots the

in situ Brunt–Väisälä frequency as a function of depth

Vol. 181, (2024) On the Nature of Potential Energy in Atmospheric Gravity 7



verified, for example that the ratio EE=EP is 132% for

the fundamental radial mode 0S0 and 111% for its

first overtone 1S0: The physical explanation, inci-

dentally qualified as ‘‘obvious’’ by Dahlen and Tromp

(1998), would be that EG can become negative under

a trend towards a gravitational collapse (which

remains controlled in the case of a stable atmosphere

featuring a real Brunt–Väisälä frequency, or in the

case of the radial modes of the Earth by a sufficient

elasticity, albeit weak in the absence of transverse

stresses). Equation (4d) shows that this effect is due

analytically to crossover terms of the form ðy1 y3Þ; as

opposed to strictly quadratic ones in (4a) and (4c).

Note in particular that EG becomes negative in the

general band of altitudes where the vertical motion y1

has nodes, and changes sign (25–50 km). It is

remarkable that this is also the zone of a local min-

imum in the value of the in situ Brunt–Väisälä

frequency fBV ; as shown on the top frame of Fig. 5. In

general, a low fBV will express a less efficient grav-

itational restoring force for a given vertical

displacement (it would disappear for fBV ¼ 0).

Indeed, we find a significant, if not wholly perfect,

anti-correlation of �79% between the kernel ratio

EE=EP and fBV in the depth range 26–89 km.

The conclusion of this section is that, contrary to a

widespread perception, the GR0 branch is not in the

nature of gravitational oscillations, since the energy

of the restoring forces is overwhelmingly of an elastic

nature, at least throughout the denser layers of the

atmospheric column, where the oscillation actually

moves significant masses of air. In other words, a

‘‘putative tsunami’’ of the atmosphere is subject to

coupling with the elastic properties of the medium, to

the extent that the physical nature of the wave is

changed. It can then be assumed that the origin of this

coupling resides in the similarity of the undispersed

celerity of the would-be ‘‘atmospheric tsunami’’

(313 m/s) and the intrinsic speed of sound in the

denser layers of the atmosphere comprising most of

its mass ð� 340 m/s). Note that this concept was

inherent in the efforts of the early authors on this

subject (L10; Pekeris, 1937; Taylor, 1937). Section 3

will explore this assumption by examining in detail

Figure 6
Same as Fig. 2 in the case of the undertone ‘‘Pekeris’’ mode GR2 at

T � 1000 s. Note the faster and smoother growth of y1 with height,

and the more complex behavior of y2

Figure 7
Same as Fig. 5 for the undertone GR2
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the effect of the speed of sound a on the physical

nature of a conventional tsunami wave in the ocean.

Finally, we examine the case of the ‘‘Pekeris’’

undertone GR2 which Harkrider and Press (1967;

Fig. 8) have shown can make a weaker but significant

contribution to the far-field overpressure (and sea level

disturbance in the presence of an oceanic column). In

the low-frequency limit, this wave has a celerity of

� 260 m/s, intermediate between those of GR0

(313 m/s) and of a tsunami wave in a 5-km deep ocean

(220 m/s). Figure 6 is a counterpart to Fig. 2 at a per-

iod of � 1000 s, the corresponding degree for a GR2

mode being l ¼ 157: The vertical displacement y1 is

found to increase even faster with height in the atmo-

sphere, gaining 10 orders of magnitude to the top of the

structure, but more regularly, with only one change of

polarity around 120 km. By contrast, the stress y2

(opposite of the overpressure) decreases slower than its

fundamental analog, and features a change of sign

around z ¼ 10 km. On Fig. 7, the ratio of the kernels of

EE and EP is shown to be much larger than 1 over a

major part of the atmosphere, to the extent that the

integrated value for the whole mode, 155%, is itself

greater than 1. In this respect, this undertone also fea-

tures very significant elastic deformation and neither

can it be regarded as a ‘‘tsunami’’ of the atmosphere.

3. A New Look at the Effects of Elasticity

and Layering on an Oceanic Tsunami

We revert here to the case of the classical tsunami

of an oceanic layer, bounded by a realistic model of

the Earth (e.g., the PREM model) and a free surface

with no atmosphere. We explore the effect of large

variations in compressibility, and hence speed of

sound a in the ocean, on the nature of the eigen-

function of the tsunami, and in particular on the

distribution of potential energy between its elastic

and gravitational forms.

The question of the influence of elasticity on the

dispersion of a standard tsunami was investigated

more than 40 years ago by Okal (1982), who used the

spheroidal mode approach (Ward, 1980) to obtain a

Figure 8
Deviation of the phase velocity C of the tsunami of a 4-km oceanic column contoured as a function of period and sound velocity in the ocean.

Both scales are logarithmic. On the left frame (a), the reference velocity is Chydro defined by Eq. (3); on the right one (b), it is simply its value

under the SWA. The dashed lines indicate a realistic value of a (1.5 km/s) and for reference CSWA ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
g HOc:

p
¼ 198 m/s
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reduction of phase velocity dC=C � �C2=6a2; on the

order of �0:3% (or �1:5 m/s) in a 4-km deep ocean

at a typical period of 1000 s, and for a realistic value

of the speed of sound in seawater (1.5 km/s). Indeed,

subtle discrepancies had been reported as early as

60 years ago (Nakamura & Watanabe, 1961) between

arrival times of recorded tsunamis and simulated

waveforms, and such observations were later con-

firmed systematically on the high seas, using ocean-

bottom DART sensors (e.g., Hébert et al., 2009;

Rabinovich et al., 2011). Motivated by such reports,

several authors, notably Watada et al. (2014) and

Abdolali and Kirby (2017), showed that they were a

combined effect of the finite compressibility of the

ocean, as well as of the gravitational oscillation of the

solid Earth below it, two agents not included in tra-

ditional simulation algorithms, e.g., MOST (Titov

et al., 2016), which assume a rigid bottom and an

incompressible ocean. We note of course that Ward’s

(1980) approach using a normal mode algorithm in

Saito’s (1967) full 6–dimensional formalism auto-

matically accounts for both.

However, as those authors were motivated by

observations in the real ocean, they limited their

investigations to realistic values of a (about 1.5 km/s).

On the other hand, Okal (1982) investigated a wider

domain of values of a; but restricted his study to l ¼
200; in practice T � 1000 s. In order to gain a more

profound understanding of the coupling between

elasticity and gravity, we will explore this question

over a broad range of values of both T (from 600 to

6000 s), and a (from 10 km/s down to 125 m/s), such

extreme sound velocities being clearly irrelevant in a

real-life ocean, but the lower ones providing insight for

an application to the atmosphere. We fix the depth of

the oceanic column at HOc: ¼ 4 km, to allow direct

comparison with the works of Okal (1982) and Watada

et al. (2014).

On Fig. 8a, we contour the opposite of the devi-

ation, expressed in percent, of the phase velocity C

from its value Chydro in a hydrodynamic model taking

into account its dispersion outside the SWA, but

neglecting the elasticity of the ocean and the elastic

Figure 9
a Ratio of elastic to total potential energy, EE=EP; in the classic tsunami of a 4-km deep ocean, contoured as a function of period T and sound

velocity a (using logarithmic scales). The ratio remains less than 2% at all periods for a realistic value of a (1.5 km/s), but would increase

significantly for much smaller a: b Same as a for a 5-km deep ocean
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and gravitational properties of the solid Earth. Chydro

is calculated numerically at each frequency from

x ¼ Chydro khydro and

x2 ¼ g khydro tanh ðkhydro HOc:Þ:
ð5Þ

The figure uses logarithmic scales for period T and

sound velocity a: Figure 8b similarly contours the

absolute value of the deviation of C with respect to its

value under the SWA, routinely used in transoceanic

simulations. Finally, on Fig. 9, we contour the elastic

fraction of the potential energy, EE=EP; also expres-

sed in percent, as a function of a and T.

As expected, the primary difference between

Figs. 8a and 8b takes place at shorter periods where

the SWA starts to break down, and Chydro becomes

smaller than CSWA: However, that effect is limited to

larger (and realistic) values of a: As a becomes

smaller, its effect dwarfs that of the breakdown of the

SWA. For a ¼ 1:5 km/s, we confirm the general

patterns identified by Watada et al. (2014), who found

a minimum reduction of celerity of � 1% with

respect to the SWA value around 1000 s (their

Fig. 5a). The intrinsic contribution of a is more

important at longer periods, but the breakdown of the

SWA takes over at the shorter ones. In this respect, it

was unfortunate that Okal (1982) inadvertently

restricted his study to l ¼ 200 (in practice

T � 1000 s, precisely the locus of the minimum),

which led him to conclude that the effect of finite a
was essentially negligible; note also that Okal (1982)

did not consider the breakdown of the SWA.

On Fig. 9a, we similarly contour the ratio EE=EP

of elastic to total potential energy of the oceanic

tsunami. The general shape of the figure is remark-

ably similar to that of Fig. 8a, but the ratio grows

significantly faster with decreasing a: In the vicinity

of T ¼ 1000 s, we reproduce the results of Okal

(1982, Table 1), who obtained ratios of � 1% for

a ¼ 1:5 km/s and 38% for a ¼ 200 m/s, essentially

equal to the SWA celerity for HOc: ¼ 4 km (198 m/s),

and shown as the lower white dashed line on Fig. 9a.

On Fig. 9b, we extend the investigation to a deeper

oceanic column (HOc: ¼ 5 km), and find that the

potential energy grows even faster with decreasing a;
reaching 50% at 200 m/s; however, EE=EP keeps the

same value ð� 37%Þ at the SWA celerity (now faster

at 221 m/s). Indeed, we have verified the robustness

of this ratio for unrealistically deep oceans, all the

way to HOc: ¼ 230 km, where the SWA tsunami

celerity reaches the classic sound velocity in seawater

(1.5 km/s). Finally, our more systematic investigation

across a wide frequency band shows that EE=EP

becomes largely independent of frequency for

a\500 m/s.

As the elastic fraction in the potential energy

reaches such ratios, and further increases for even

lower a; the physical nature of the oscillation in the

wave is fundamentally altered. A ratio of 25% elastic

energy can be regarded as a threshold beyond which

the wave is no longer of a gravitational nature and

ceases to be a legitimate ‘‘tsunami’’ (Okal, 1982).

An additional issue, not taken into account in the

above computations, nor in Okal (1982), is that in the

presence of gravity, a finite compressibility of the

fluid will result in an increase of its density q with

depth in the ocean. This additional effect on the

celerity of a standard oceanic tsunami was examined

by Tsai et al. (2013), who showed that an increase of

density with depth in the oceanic column leads to a

decrease of celerity, on the order of an additional

0.5% under the SWA for realistic models of the ocean

Figure 10
Comparison of the tsunami dispersion of one- and two-layer 4-km

deep oceans. The thin black line is the phase velocity Cone of the

one-layer (homogeneous) model with the reference SWA value

shown as the black dashed line. The green dashed line results from

the application of the correction pþ (6) to the SWA value, and the

dotted blue trace to Cone: The thick red line is the dispersion Ctwo

computed for the 2-layer model detailed in the text; note the perfect

agreement with ðpþ � ConeÞ: The brown dotted line results from

applying the correction pCM ¼ 0:913 to Cone
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(i.e., a linear increase in q of 0.8% or 8.6 kg=m3 from

top to bottom). Watada (2013) later considered the

formal case of a two-layer incompressible ocean and

derived an exact formula for the correction of its

tsunami celerity [his Eq. (36) p. 4004]:

C 2
two

C 2
one

¼ p2
þ

¼ 1

2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4 ð1 � aWÞ ð1 � bWÞ bW

ph i ð6Þ

where aW ¼ qt=qb and bW ¼ dt=ðdt þ dbÞ are

dimensionless ratios relating the densities and thick-

nesses of the top (t) and bottom (b) layers (we add a

subscript W to a and b; to distinguish them from the

sound velocity, a in our notation, and from the

parameter b introduced by L10; see Sect. 4 and

Appendix 2).

Because once again, these authors were largely

motivated by an application to real oceans, they

focused primarily on small variations in q; which

Figure 11
a Values of the correction pþ derived under the SWA by Watada et al. (2014) for the tsunami of a two-layer 4-km deep ocean, contoured for

the full range of parameters aW and bW characterizing the layering. b Same as a for the parameter pCM using the simplified Center-of-Mass

approach. Note the general agreement of the two parameters, except for very small values of aW and very large ones of bW

Figure 12
Elastic fraction EE=EP of the potential energy for tsunami modes of

a 4-km deep ocean, computed for a single-layer homogeneous

ocean (black line), and a two-layer one (red line) with a 1:2 density

contrast ðaW ¼ 1=2Þ and a 2:1 thickness ratio ðbW ¼ 2=3Þ: Note

the minimal difference between the values, across the whole

frequency spectrum
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preclude the direct application of their results to any

atmospheric model. In addition, they only investi-

gated perturbations in celerity, and did not address

the question of the physical nature of potential energy

(elastic vs. gravitational), which controls whether or

not the wave can be considered a ‘‘tsunami’’. Even

Tsai et al. (2013) who used a Lagrangian variational

approach in their derivations, did not elaborate on EE;

and largely regarded it as negligible.

By contrast, and with an eye to applying this

concept to the case of the atmosphere, we consider

here a 4-km ocean featuring a large density contrast,

namely aW ¼ 1=2: In order to preserve the total mass

of the ocean, we use qt ¼ 750 and qb ¼ 1500 kg=m3;

with layer thicknesses dt ¼ 2:67 and db ¼ 1:33 km,

respectively ðbW ¼ 2=3Þ: These values yield pþ ¼
0:934; note that Watada’s (2013) Eq. (37) should not

be used, since it assumes aW close to 1.

Figure 10 shows the dispersion of the tsunami

mode of this two-layer model, computed in the nor-

mal mode formalism, taking into account the finite

compressibility of the ocean (a ¼ 1:5 km/s). The thin

black line is the dispersion Cone for a one-layer ocean

of constant density, and the thick red one ðCtwoÞ for

the two-layer ocean. We note the excellent agreement

with Watada’s (2013) results, shown as the blue

dotted line, once the correction pþ ¼ 0:934 has been

applied to Cone: The green dashed line shows the

undispersed CSWA ¼ 198 m/s corrected by pþ:

The physical interpretation of pþ is of course that

because of the stratification, the mass of water is on

average at a lower altitude from the bottom than in

the homogeneous case, and an ‘‘effective’’ thickness

Heff should be smaller than HOc:; with the tsunami

celerity
ffiffiffiffiffiffiffiffiffiffiffi
g Heff

p
similarly reduced. This remark

suggests characterizing Heff using the altitude zCM of

the center of mass of the two-layer model. This is

easily computed as

zCM ¼
RHOc:

0
q z � dzRHOc:

0
q � dz

¼ HOc:

2
� ð1 � bWÞ2 þ aW ½1 � ð1 � bWÞ2�

1 � bW þ aW bW

:

ð7Þ

With the above values for the parameters of the two

layers, an intuitive estimate would be Heff ¼ 2 zCM ¼
ð5=6ÞHOc:; which in turn leads to a reduction in

celerity by a factor pCM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Heff =HOc:

p
¼ 0:913: It is

shown applied to Cone as the brown dotted line on

Fig. 10. While it overcorrects with respect to the

Table 1

Results of modeling of GR0 for various values of /

Models (Sects. 4 and 5.1) Numerical simulations (Sect. 5.2)

/ m f b a/ C/ a//C/ C C/a/ C=C/ n TEST EE/IE P

(km) (K/km) (km/s) (km/s) (km/s) (%)

(47) (16) (45) (26) (24) (36) (37)

1.000 1 1a 0.339 0.406 0.835 0.339 1.000 0.835 1 96.4

1.032b 31.250 270.9a 1.063 0.334 0.400 0.835 0.329 0.985 0.823 28.4026 1.005 84.6

1.050 20.000 176.4a 1.633 0.332 0.397 0.836 0.325 0.979 0.819 18.1016 1.000 80.4

1.065 15.385 137.6a 2.093 0.330 0.394 0.838 0.322 0.976 0.816 13.8689 1.003 78.0

1.080 12.500 113.4 2.540 0.328 0.392 0.837 0.319 0.973 0.814 11.1775 1.000 75.1

1.100 10.000 92.4 3.117 0.325 0.389 0.835 0.315 0.970 0.810 8.8488 1.004 72.2

1.150 6.667 64.4 4.472 0.319 0.382 0.835 0.308 0.966 0.807 5.6314 1.002 66.5

1.167 6.000 58.8 4.898 0.317 0.380 0.834 0.306 0.965 0.806 4.9640 1.001 65.5

1.200 5.000 50.4 5.714 0.314 0.376 0.835 0.302 0.962 0.804 3.9356 1.003 63.0

1.250 4.000 42.0 6.857 0.309 0.371 0.832 0.296 0.958 0.799 2.8393 1.012 59.4

1.300 3.333 36.4 7.912 0.305 0.366 0.833 0.292 0.957 0.798 1.9965 1.011 56.2

1.350 2.857 32.4 8.889 0.301 0.362 0.831 0.288 0.957 0.796 1.2506 1.015 53.3

1.380 2.632 30.5 9.441 0.299 0.359 0.833 0.286 0.956 0.796 0.7417 1.016 53.1

1.400 2.500 29.4 9.796 0.298 0.358 0.832 0.285 0.956 0.796 52.9

aCapped at 130 km in model used

bBest fit to ARDC model
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exact pþ; it remains an acceptable estimate of the

effect of layering. More generally, on Fig. 11 we

compare contours of the functions pþ; obtained as the

square root of (6), and pCM obtained from the esti-

mate (7) of the center of mass of the column. While

the two corrections differ somewhat for very large bW

and very small aW ; they remain within 10% of each

other over 80% of the plot. This further suggests

using twice the altitude of the center of mass for Heff

to obtain an estimate of celerity in the case of a

strongly compressed fluid.

Turning our attention to the effect of layering on

the elastic fraction of potential energy, we plot in

Fig. 12 the ratio EE=EP as a function of frequency for

the two-layer (solid line) and one-layer (dashed line)

4-km oceans. We find that layering has a minimal

effect, even at the shortest periods considered here,

for which the ratio decreases by an amount of only

0.74% to 0.68%. Note that our results for the one-

layer case differ slightly from Okal’s (1982) who

considered an ocean with a rigid bottom (his Table 1,

p. 5). In our model, the wave penetrates, albeit

weakly, the solid Earth where its energy is mostly

elastic, thus increasing the ratio at a period of 1000 s

by 0.86%, as opposed to 0.57% in Okal’s (1982)

model, but these numbers remain in any case very

small. We conclude that layering does not affect the

physical nature of the wave, which remains a gravi-

tational oscillation, and therefore a genuine tsunami.

In conclusion of this section, we have expanded

the work of Okal (1982) for the tsunami of a liquid

oceanic column. We confirm that, as the compress-

ibility of seawater is increased (a decreased), the

potential energy of the tsunami becomes increasingly

elastic, over the entire range of frequencies consid-

ered. When the speed of sound a becomes

comparable to, or smaller than
ffiffiffiffiffiffiffiffiffiffiffiffi
g HOc:

p
; the wave

loses its nature as a gravitational oscillation, and thus

ceases to be a tsunami.

4. Atmospheric a Close to C: Not a Coincidence

In Sect. 2, we have established that the mode GR0

cannot be regarded as the ‘‘tsunami’’ of the atmo-

spheric column since it represents an oscillation

between kinetic energy and overwhelmingly elastic

potential energy, and the structure of its eigenfunc-

tion in the troposphere deviates fundamentally from

that of a tsunami (Fig. 3). Section 3 has hinted that

this effect is rooted in the similarity between the

celerity C of GR0 (taken as its undispersed value at

low frequencies, � 315 m/s) and the speed of sound,

at least in the dense layers of the lower atmosphere

ða ¼ 340 m/s).

We show here that this similarity is not coinci-

dental, but rather expected if the atmosphere is

modeled as a perfect gas. We first recall that the

speed of sound a of a gas (in particular of the

atmosphere) was first given as
ffiffiffiffiffiffiffiffiffi
P=q

p
by Newton

(1687), building on the results of Boyle (1662). It was

later corrected to
ffiffiffiffiffiffiffiffiffiffiffiffi
cP=q

p
by Laplace (1805) who

recognized the adiabatic rather than isothermal nature

of the vibration. In modern notation, a is given at

each altitude z by

a ¼ ðKS=qÞ 1=2 ¼ ðcP=qÞ 1=2 ¼ ðcRH=MÞ 1=2 ð8Þ

where H is the absolute temperature at altitude z,

R ¼ 8:32 J � kg�1 � mole�1 the molar gas constant,

and M � 0:029 kg/mole the molar mass of air. c is

the familiar ratio of heat capacities at constant pres-

sure and volume, which takes the value 1.4 for a

diatomic gas. In the real atmosphere, and despite its

great rarefaction with height, H and hence a vary

only slightly through the atmospheric column

(Fig. 1).

A fundamental argument is then that the pressure

P in (8) follows dP ¼ �q g dz; and thus can be

expected, in the lower, dense layers of the atmo-

sphere to take the form

P ¼ q0 g � HP ð9Þ

where HP is an ‘‘effective’’ thickness of the

atmosphere.

Meanwhile, under the SWA, the celerity of a

tsunami is expected to be

C ¼ ðg � Heff Þ 1=2 ð10Þ

where Heff is another appropriate ‘‘effective thick-

ness’’ of the atmosphere, which, as argued in Sect. 3,

might be approximated by 2 zCM where zCM is the

altitude of the center of mass of the horizontal lay-

ering of the atmosphere.
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Then, the ratio of the velocities a and C takes the

simple form

a
C
¼ ðcHP=Heff Þ 1=2: ð11Þ

There is no reason why the two thicknesses HP and

Heff should be equal, but since they represent dif-

ferent averages of the properties of an atmospheric

layering, they would be expected to be of a compa-

rable order of magnitude, which in turn would make

the ratio (11) close to 1, and according to the results

of Sect. 3, rule out the development of a ‘‘tsunami’’,

i.e., a gravitational oscillation, in the atmosphere.

In this section, we consider a number of theoret-

ical models of atmospheric layering, and compare the

theoretical values of C and a with their numerical

counterparts. Specifically, we discuss them in the

context of L10, whose work forms the basis of sev-

eral later developments. Here, we summarize his

results on the propagation of fundamental atmo-

spheric oscillations, with many details regrouped in

Appendix 2, notably regarding his notation.

In very general terms, L10 first considers two

limiting models of the atmosphere, an isothermal one

in which P=q ¼ cnst, and an isentropic one, where

P=ðqcÞ ¼ cnst. The first model had been used by

Laplace (1805), and L10 points out that author’s use

of a purely horizontal particle motion, an assumption

which we would regard as plausible, given the results

of Sect. 2. L10 (p. 553) then argues that such a

‘‘longitudinal wave’’ would be close to an acoustic

signal propagating horizontally as a sound wave at

the ‘‘Newtonian’’ velocity of sound C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RH=M

p
;

apparently neglecting the adiabatic correction
ffiffiffi
c

p

introduced by Laplace. L10 then defines

H ¼ RH
M g

ð12Þ

which immediately gives C the form
ffiffiffiffiffiffiffi
gH

p
; suggest-

ing that the wave is indeed the gravitational

oscillation of a fluid layer of thickness H, albeit

without any physical justification regarding its

structure. Note in particular that this interpretation

would contradict L10’s previous assertion that the

wave is ‘‘close to an acoustic signal’’. H can be

interpreted as the thickness of a homogeneous

atmosphere ðq ¼ q0 ¼ cnst) whose weight creates

the pressure P0 observed at the Earth’s surface.

The isothermal and isentropic layerings can be

regarded as end members of a continuum of models

featuring

P=ðq/Þ ¼ cnst; ð13Þ

with / ¼ 1 and / ¼ c ¼ 1:4; respectively.

� For all / 6¼ 1; these models are characterized

by a linear variation of H with height:

H ¼ H0 � 1 � /� 1

/
g M

RH0

� z

� �
ð14Þ

and fractional power law variations of P and q:

P ¼ P0 � 1 � /� 1

/
g M

RH0

� z

� �m/

q ¼ q0 � 1 � /� 1

/
g M

RH0

� z

� �m
ð15Þ

where m ¼ 1=ð/� 1Þ in the notation of L10 (see

Appendix 2). Equation (14) leads to absolute zero

temperature ðH ¼ 0Þ at an altitude

f ¼ /
/� 1

� RH0

g M
¼ m/ � H: ð16Þ

Since H cannot be negative, the atmosphere then has

the finite height f:
� For / ¼ 1 (isothermal layering), the pressure

and density of the atmosphere vary as exp ð�z=HHÞ;
with HH ¼ RH=Mg; and the ‘‘height’’ f of the

atmosphere becomes infinite. Note that HH is

equivalent to L10’s H introduced above (12).

� For /\1; the temperature would increase reg-

ularly with height, which clearly does not apply to the

troposphere and stratosphere, although it could apply

locally in the upper layers of the atmosphere (e.g.,

above 100 km).

� For /[ 1; Eq. (14) holds, and the atmosphere

has the finite thickness f: That underscores the

unrealistic application of such models to the full

atmosphere, which can however approach such con-

ditions over a finite range of altitudes. We note in

particular that the temperature H in the portion of the

ARDC model in which it decreases with height

ðz\95 km) is best-fit with a parameter / ¼ 1:032;

before H starts rising fast at greater heights.
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� The isentropic model is reached for / ¼ c ¼
1:4; the thickness of the atmosphere being

fS � 29:4 km ¼ ð7=2ÞH in L10’s notation (see

Appendix 2), and the gradient H0=fS ¼ 9:8 K/km

being known as the ‘‘lapse rate’’ in atmospheric

physics (e.g., Kittel & Kroemer, 1980, p. 179).

�; For /[ c ¼ 1:4 (superadiabatic layering), the

atmosphere is unstable and convects.

Thus, legitimate values of / in (13–16) are in the

interval ½1; c�: L10 then generalizes his study to all

such values, parameterizing the models through the

temperature gradient b; which ranges from 0 to the

lapse rate (b1 in his notation, for which we prefer bS

for ‘‘isentropic’’):

bS ¼ b1 ¼ 2

7

H0

H
: ð17Þ

There follows in L10 a rather arcane mathematical

derivation of the dispersion of the ‘‘Lamb wave’’

(which corresponds to Harkrider’s 1964 GR0 branch)

through the roots of his Equation (63, p. 563):

1

2
n Jmþ1 ðnÞ ¼

bS

b
� 1

� �
Jm ðnÞ ð18Þ

where Jm is the regular Bessel function of order m; and

m ¼ 1=ð/� 1Þ: Equation (18) assumes a low-fre-

quency limit (wavelength much larger than the

various scales of the atmosphere); the solution for the

celerity C of the Lamb wave GR0 is then found

through L10’s Equation (66, p. 563):

C2 ¼ bS

b
� 1

� �
� 4 ðm þ 1Þ gH

n2
ð19Þ

where n is the first non-zero root of (18). Solutions for

undertones such as the Pekeris mode GR2 would use

subsequent roots of (18) as n in (19). Unfortunately,

these results do not lend themselves to easy numerical

computation, with quantities such as the bracket in (18)

varying from 0 (isentropic) to infinity (isothermal). In

practice, values of n can be easily estimated only when

they are large or small compared to 1, or when m is an

integer plus 1/2, in which case L10 was able to man-

ually compute Jm using trigonometric functions.

In the following sub-sections, we follow L10’s

approach and consider a full range of various atmospheric

models of the type (13) with ð1�/� 1:4Þ: We use the

center-of-mass model to obtain estimates of the

celerity C/ of a would-be tsunami as a function of /;
and most importantly of the ratio a=C/; which Sect. 3

has suggested controls whether or not the resulting

Lamb wave can be considered a ‘‘tsunami’’ of the

atmosphere. Most of these models are of course at least

locally inappropriate, but arguably they can provide a

range of possible structures approaching the conditions

of the real atmosphere, and as such give physical

insight into the problem. We will find that for

1�/� 1:4; the ratio a=C/ remains remarkably con-

stant at � 0:83:

4.1. The Isothermal Model ð/ ¼ 1 or b ¼ 0 in L10’s

Notation)

As mentioned earlier, the concept was used

originally by Newton (1687) and later Laplace

(1805). An isothermal structure was also used e.g.,

by Kanamori et al. (1994) to model the waves of the

1991 Pinatubo explosion. It would be expected to be

a fair representation of the ARDC model, since the

latter can be regressed with / ¼ 1:032 in its part

featuring substantial material density ðz\95 km).

* Speed of sound a
In an isothermal atmosphere, a will be constant,

and equal to

aH ¼ ðcRH=MÞ 1=2 ¼ ðc gHÞ 1=2 ¼ 340 m=s ð20Þ

for H ¼ 288 K, the average temperature at the

Earth’s surface.

* Celerity C of a would-be tsunami

In this case, the density q varies with height z as

qðzÞ ¼ q0 expð�z=HÞ ð21Þ

with H ¼ RH=Mg � 8:4 km, as defined by L10 [see

(12) above]. Following Sect. 3, we estimate Heff

as twice the altitude zCM of the center of mass

of the atmospheric column, zCM ¼
R1

0
z qðzÞ �

�
dz=

R1
0

qðzÞ � dz ¼ H�; so that Heff ¼ 2 H: The

celerity of a would-be tsunami under the SWA will be

CH ¼
ffiffiffiffiffiffiffiffiffiffiffi
2 gH

p
� 408 m=s ð22Þ

for H ¼ 288 K.
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4.2. The General Case / 6¼ 1

In this model, the atmospheric layering satisfies

P=ðq/Þ ¼ cnst, with / strictly greater than 1 (and not

greater than c ¼ 1:4Þ; the atmosphere has the finite

thickness f ¼ m/H (16).

* Would-be tsunami velocity

To obtain an estimate of Heff we compute the

altitude of the center of mass of the column

zCM ¼ Heff

2
¼

R f
0

z qðzÞ � dzR f
0
qðzÞ � dz

¼ f
m þ 2

¼ /
2/� 1

� H:

ð23Þ

Hence, the undispersed SWA celerity of the would-be

tsunami is estimated at

C/ ¼ 2/
2/� 1

gH

� � 1=2

: ð24Þ

* Speed of sound

In order to obtain an estimate of the average speed

of sound, we consider the average of
ffiffiffiffi
H

p
; weighted

by the density at each altitude z

h
ffiffiffiffi
H

p
i ¼

R f
0
q

ffiffiffiffi
H

p
� dzR f

0
q � dz

¼
ffiffiffiffiffiffi
H0

p R f
0
ð1 � z=fÞ 1=2 ð1 � z=fÞm � dzR f

0
ð1 � z=fÞm � dz

¼
ffiffiffiffiffiffi
H0

p
� m þ 1

m þ 3=2
:

ð25Þ

Hence

a/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cR =M

p
h

ffiffiffiffiffiffi
H

p
i ¼ 2/

3/� 1
�

ffiffiffiffiffiffiffiffiffiffi
c gH

p
: ð26Þ

Another estimate can be obtained by averaging H
rather than

ffiffiffiffi
H

p
: Equation (25) is replaced by

hHi ¼
R f

0
qH � dzR f

0
q � dz

¼ H0

R f
0
ð1 � z=fÞmþ1 � dzR f

0
ð1 � z=fÞm � dz

¼H0

m þ 1

m þ 2
¼ /

2/� 1
H0

ð27Þ

and then (26) by:

a0/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRhHi =M

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/

2/� 1

s
�

ffiffiffiffiffiffiffiffiffiffi
c gH

p
: ð28Þ

4.3. The Special Case of the Adiabatic (Isentropic)

Model (/ ¼ c or b ¼ b1)

As a limiting case of the above models, the

isentropic layering has received particular attention,

notably from L10. The Brunt–Väisälä frequency (1)

then vanishes, and there is no gravitational restoring

force to an adiabatic vertical displacement of a

particle of atmosphere. However, a heterogeneous

horizontal displacement entices a local change of

volume and hence of density, which does contribute a

change in potential and hence a gravitational com-

ponent to the restoring force.3

In this particular case, the celerity CS computed

from (24) is 358 m/s for H0 ¼ 288 K at the bottom of

the atmosphere, the average sound velocity (26) is

aS ¼ ð7=8Þ
ffiffiffiffiffiffiffiffiffi
c gH

p
¼ 297 m/s and the alternative

estimate (28) is a0S ¼ 300 m/s, those two values

differing by only 1%.

Figure 13
The solid line plots the ratio a/=C/ (33) of average sound velocity

(26) to celerity of the GR0 mode computed from the center of mass

approximation (24), as a function of the parameter /: The dashed

line uses a0/ (28) instead

3 A physical explanation of this situation is that the ‘‘free air’’

component of the restoring force (due to displacement in a gravity

field including buoyancy) vanishes, but the ‘‘Bouguer’’ one (due to

a change in that field upon a change of material properties) does

not.
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We note that the dispersion of the tsunami of an

adiabatically stratified ocean column was investigated

by Tsai et al. (2013) and Watada (2013) who

obtained, as a counterpart to pþ defined in (6), a

correction

pAdiab ¼ 1 � qb � qt

4 qavg:

: ð29Þ

However, their approach assumed a small correction,

i.e., pAdiab close to 1, which does not hold if applied to

the present atmospheric model ðqt ¼ 0; qb ¼ q0;

qavg: ¼ q0=ðm þ 1Þ ¼ ð2=7Þq0Þ; yielding pAdiab ¼
1=8 and CAdiab ¼ 45 m/s, which renders the method

inapplicable. This is due to their tacit assumption of a

weak stratification, or ðqb � qt 	 qavg:Þ; clearly

violated by the atmospheric model considered here.

The theoretical values of all parameters

ðm; f; b; a/;C/Þ are compiled as a function of / in

the left part of Table 1 (first seven columns).

4.4. The ARDC Model

Finally, we consider the ARDC model and

compute the average value of a as

aARDC ¼
R ztop

0
aðzÞ qðzÞ � dzR ztop

0
qðzÞ � dz

¼ 317 m=s ð30Þ

between the Earth’s surface and ztop ¼ 130 km, and

the expected celerity of a would-be tsunami under the

SWA in the center of mass model

CARDC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 g zCM

p
¼ 380 m=s with

zCM ¼
R ztop

0
z qðzÞ � dzR ztop

0
qðzÞ � dz

¼ 7:2 km:
ð31Þ

5. Discussion and Conclusion

5.1. General Discussion

� For / ¼ 1 (isothermal model), the combination of

Eqs. (20) and (22) leads to a ratio

aH
CH

¼
ffiffiffiffiffiffiffi
c=2

p
� 0:837: ð32Þ

� For other values of /; and combining (24) and (26)

a/
C/

¼
2/

ffiffiffi
c

p

3/� 1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1=2/

p
ð33Þ

or, using the alternative estimate of sound velocity

(27)

a0/
C/

¼
ffiffiffiffiffiffiffi
c=2

p
� 0:837 ð34Þ

this last result being, remarkably, independent of /
and exactly equal to (32). As illustrated on Fig. 13,

even the ratio (33) varies only very slightly, from the

value (32) for / ¼ 1 to ½2c=ð3c� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1=2

p
� �

0:830 for / ¼ c ¼ 1:4: In addition, the ratio (33) is

continuous with (32) as / ! 1; even though (24)

and (26) did not strictly apply for / ¼ 1:

� As for the ARDC model, the ratio of the estimates

(30) and (31) is also found to be

aARDC

CARDC
¼ 0:835 ð35Þ

in excellent agreement with the ratios a1:032=C1:032 ¼
0:8366 and a01:032=C1:032 ¼ 0:8367 obtained by setting

the regressed slope / ¼ 1:032 in Eqs. (33) and (34).

However, we note that the use of the center of mass

model for CARDC overestimates its observed value

(313 m/s) or that computed in Sect. 2 (312 m/s).

These results indicate that for all legitimate values

of /; we predict a sound velocity comparable to, but

lower than, the would-be tsunami velocity, estimated

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 g zCM

p
: Consequently, the results of Sect. 3

suggest strong coupling between the elastic and

gravitational components of the restoring force, and

therefore predict that no tsunami can develop inside

any of the layered structures considered.

While in all cases, the velocities C are found

slightly greater than a; the important result is that

they are fundamentally on the same order of magni-

tude. The robustness of the ratios (32–35) for

significantly different models of atmosphere suggests

that this general equivalence of a and C is an intrinsic

property of the atmosphere as a perfect gas, rather

than a fortuitous occurrence. We recall that, by

contrast, the same ratio for an ocean of realistic depth

is always greater than 6 (for a 6-km deep ocean), and

even larger in shallower seas.

We thus come to the conclusion that, contrary to a

liquid whose compressibility remains moderate, a
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perfect gas subject to a gravity field gets stratified to

an extent where the velocity of a would-be tsunami

will necessarily be comparable to a; and the potential

energy of the wave primarily elastic.

In short, a perfect gas such as the atmosphere

cannot sustain a tsunami, defined as an oscillation

between kinetic and gravitational energy.

5.2. Comparison with Numerical Values

of the Celerity of GR0

We then compare these theoretical estimates of

would-be tsunami celerities to actual values along the

GR0 branch obtained by running our normal mode

algorithm on models of atmospheric layering of the

form (13) with / varying between 1.0 and 1.4. We

keep the temperature constant at the bottom of the

atmosphere ðH0 ¼ 288 K). For /� 1:05; the model

is capped at an altitude of 130 km, otherwise at the

altitude f given by (16). For each model, we compute

the GR0 eigenfunction, and in particular its celerity

C, taken along the undispersed part of the branch,

and the elastic portion of the potential energy, EE=EP;

in the frequency range 0.1–1.67 mHz ðT ¼ 600–

10000 s). We compile their values in the right part of

Table 1 (last six columns), as well as the ratios C=a/
and C=C/: Finally, we recompute the parameter n
defined in (18) by using the actual phase velocity C of

the GR0 wave to recast (19) into

n2 ¼ ðbS=b� 1Þ � 4 ðm þ 1Þ gH

C2
ð36Þ

and we form the ratio

TEST ¼ n
2
� b
bS � b

� Jmþ1ðnÞ
JmðnÞ

ð37Þ

which characterizes the fit of the actual celerity C to a

root of the Bessel equation (18). We find that this fit

is excellent ðTEST ¼ 1 within 2%), even when

approaching the end-member values / ! 1 or 1.4.

This constitutes an independent verification of the

Figure 14
a Contour plot of the ratio of elastic to total potential energy of the GR0 modes, as a function of frequency and parameter /; for various

models of atmospheric layering. Note the strong dependence on /; and the weaker one on frequency, especially at lower values of /:
However, the ratio always remains greater than 50%. b Same as a for the computed celerity C. Note its systematic decrease with increasing /;

and the very weak dependence on frequency except when / approaches its isentropic value (1.4)
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dispersion of Lamb waves, and in particular of the

approximations underlying the derivation of L10’s

Equations (63) and (66), p. 563.

We also find that the ratio C=a/ remains between

0.95 and 1 for all values of /; which brings support to

the general concept of the Lamb wave being of an

elastic nature, traveling at close to a sound velocity,

appropriately averaged over the atmospheric

structure.

By contrast, we see in Column 10 of Table 1 that

C is always deficient with respect to the celerity C/

expected for a would-be tsunami (modeled under the

center-of-mass approximation), and increasingly so

as / grows from 1 to 1.4. This simply confirms, if

need be, that the GR0 wave cannot be regarded as a

tsunami of the atmosphere for which the celerity C

should match the estimate C/:

In addition, Fig. 14a contours the elastic fraction

of the potential energy, EE=EP; it exhibits a strong

dependence on / and a weaker one on frequency, but

remains greater than 50% over the full domain of

study, again confirming that the GR0 branch does not

constitute a gravitational oscillation.

5.3. A Final, Perhaps Outrageous but Insightful,

Experiment

In this context, it is worth re-examining Harkrider

and Press’ (1967, p. 153) statement that ‘‘when

gravity is reduced to zero, [...] the GR waves vanish’’.

Indeed, we have verified that the GR branches

disappear in the total absence of gravity, which

reduces from 6 to 4 the dimension of the eigenvector

yi in Saito’s (1967) formalism (Appendix 1).

Figure 15
Energy fraction (a) and phase velocity (b) of the GR0 branch contoured as a function of frequency and of the fraction fG by which the restoring

gravity force is artificially reduced in the experiment of Sect. 5.3. Note that for very low values of fG; the energy becomes predominantly

gravitational, which would qualify the wave as a tsunami. By then, the atmosphere has, arguably, become a ‘‘liquid’’
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Here, we further explore this question by keeping

the 6-dimensional problem, but artificially reducing

the gravity field g (and the gravitational constant G)

by a factor fG in all steps of the calculation, while

maintaining the material properties of the medium

(density and elastic constants). This amounts to

reducing the contribution of gravity to the restoring

force during the deformation, while keeping the

elastic one unchanged. We do find solutions which

share the characteristics of the unperturbed branch

GR0; notably its very weak dispersion. Figure 15a is

a counterpart to Fig. 9, contouring the ratio EE=EP

between 0.1 and 1.65 mHz (10000 to 606 s) and for

fG varying from 0.2 to 1, in the case of an oceanless

ARDC structure.

The main result of this experiment is that EE=EP

decreases when gravity is reduced, first slowly (to

about 60% for fG ¼ 0:6), then rapidly, reaching

values of � 15% for fG ¼ 0:25 (the ratio also features

a minor decrease with increasing frequency, espe-

cially in the range fG � 0:4Þ: Under such conditions,

the energy in GR0 becomes prominently gravitational

and the branch would qualify as a tsunami of the

atmosphere. Figure 15b similarly contours the phase

velocity of the branch GR0; it is essentially indepen-

dent of frequency, but decreases sharply at lower fG;

to velocities of � 130 m/s for fG ¼ 0:2; which then

fit the SWA tsunami celerities for an 8.5-km fluid

column, but fall to less than 40% of the [unchanged]

sound velocity a:
Finally, we have verified that, for fG ¼ 0:2 and a

period T ¼ 1000 s ðl ¼ 357Þ; the ellipticity of parti-

cle motion ðl y3=y1Þ at an altitude of 10 km takes a

value of 2.09, in good agreement with that predicted

(2.23) by Eq. (3) under the SWA for g ¼ 1:96 m=s2

(as opposed to about 30 times larger in the real

atmosphere).

In short, all this evidence qualifies the GR0 wave

simulated under these conditions as a genuine

tsunami, which would seem to negate our previous

conclusion, a result especially troubling since it

occurs for the lowest values of fG:

The origin of this paradox lies in our assumption

of unperturbed mechanical properties (density, sound

velocity). As a result, we have created an artificial

medium no longer behaving as a perfect gas, and in

particular featuring a bulk modulus KS much larger

than the ambient pressure at equilibrium, controlled

by the integral of dP ¼ �qg dz: Such properties are

more characteristic of a liquid than of a gas, and

consequently, our medium may indeed become a

‘‘virtual liquid’’, able to sustain a tsunami.

While the model considered in this sub-section

has of course no application to the real Earth, we

believe that it brings insight into the fundamental

question of what distinguishes a liquid from a

[perfect] gas. As a form of condensed matter, the

former has intrinsic mechanical properties ðq; KÞ
largely insensitive to pressure and hence to gravity; in

simple terms, a liquid is highly incompressible. For

example, at the bottom of a 5-km deep ocean, the

pressure is 50 MPa, 500 times that at the surface, but

remains 45 times less than the water’s bulk modulus

(2.3 GPa). As a result, the density of seawater has

increased by only � 2% and the speed of sound by no

more than 6% (UNESCO, 1981). By contrast, in a

gas, KH is identical to P, and KS follows suit. In the

virtual medium we have considered, and for fG ¼ 0:2;

we have increased the KS=P ratio by a factor of 5 with

respect to the actual atmosphere, which is enough to

disqualify it as a ‘‘gas’’. In the presence of reduced

gravity, a true gas would feature a much weaker

stratification and lower values of P, and hence KS;

leading to strong coupling and a kind of consanguin-

ity between elastic and gravitational properties.

The bottom line of this experiment, and the

conclusion of this paper, is that the mere presence of

gravity, however small (but finite) it may be, will

segregate the mechanical and hence elastic behavior

of liquids and gases, and prevent the latter from

sustaining tsunamis.
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Appendix 1

We recall here the definition of the 6 components

of the eigenvector of a spheroidal mode in the for-

malism of Saito (1967, p. 3690), later used by

Kanamori and Cipar (1974).

� y1ðrÞ represents the vertical (radial) component

of particle motion, given as

urðr; h;/; tÞ ¼ y1ðrÞ Ym
l ðh; /Þ: ð38Þ

� y2ðrÞ represents the radial component of the trac-

tion, given as

rrrðr; h;/; tÞ ¼ y2ðrÞ Ym
l ðh; /Þ: ð39Þ

� y3ðrÞ represents the orthoradial component of par-

ticle motion, given as

uhðr; h;/; tÞ ¼ y3ðrÞ
o Ym

l ðh; /Þ
o h

: ð40Þ

� y4ðrÞ represents the shear component of the trac-

tion, given as

rr hðr; h;/; tÞ ¼ y4ðrÞ
o Ym

l ðh; /Þ
o h

: ð41Þ

� y5ðrÞ represents the change in gravity potential,

given as

wðr; h;/; tÞ ¼ y5ðrÞ Ym
l ðh; /Þ: ð42Þ

� Finally, y6ðrÞ is simply defined as

y6ðrÞ ¼
dy5ðrÞ

dr
� 4pG q y1ðrÞ ð43Þ

where the Ym
l are the spherical harmonics of degree l

and order m. In all above equations, the time

dependence e ixt has been omitted for simplicity.

Obviously, y1 and y3 have dimensions of length, y2

and y4 of pressure, y5 of velocity squared, and y6 of

acceleration.

In this fashion, all boundary conditions between

spherical shells with different mechanical properties

simply require the continuity of the six components

of the vector y, with the exception of y3 when at least

one of the layers is fluid.

Note that in all fluid layers (outer core, ocean,

atmosphere), y4 is identically zero, and y3 becomes a

spurious variable

y3 ¼ 1

r x2
g y1 �

y2

q
� y5

� �
ð44Þ

so that the differential system becomes 4-dimen-

sional. Also, in a fluid, y2 is simply the opposite of

the overpressure during the oscillation.

Finally, for large l and h not close to 0 or p;
asymptotic expansions of the Ym

l show that the partial

derivative in (40) results in an orthoradial particle

displacement uh of order ðl y3Þ while the vertical

component remains of order y1:

Appendix 2

We summarize here some of the steps in L10’s

derivation of his Equations (63) and (66) p. 563. In

particular, we emphasize the occasionally different

notation used in his paper.

1. Note that L10 orients the vertical axis (which he

calls y) downwards with the origin at the top of the

atmosphere, which is infinite in the isothermal model

and otherwise depends on the particular structure

used. On the other hand, we call it z and orient it

upwards, with the origin consistently at the bottom of

the atmosphere.

2. For a layering of the form (13), L10 does not use

the parameter /; but rather defines the [absolute]

temperature gradient

b ¼� d H
dz

¼ / � 1

/
� H0

H

¼/ � 1

/
� gM

R
ðunits: K=kmÞ:

ð45Þ
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Conversely,

/ ¼ 1

ð1 � bR=MgÞ ¼
1

ð1 � bH=H0Þ
ð46Þ

with H defined as

H ¼ RH0

M g
ð12Þ

(Note that L10’s notation is R for our R/M).

3. Define

m ¼ 1

/� 1
¼ H0

bH
� 1 ¼ gM

Rb
� 1 ðdimensionlessÞ:

ð47Þ

Note that Lamb’s notation is n in L10; m in Lamb

(1932).

4. Define h as the full height of the atmosphere

h ¼ H0

b
¼ /

/� 1
� H ¼ m/H ð48Þ

where h is defined in Eq. (12). h is equivalent to our f
in (16).

5. For the isentropic case ð/ ¼ c ¼ 1:4Þ

b ¼ bS ¼ 2

7
� H0

H
m ¼ mS ¼ 5

2
h ¼ hS ¼ 7

2
H:

ð49Þ

(L10’s notation: bS ¼ b1).

6. For the isothermal case (/ ¼ 1)

b ¼bH ¼ 0

m ¼ mH ! 1 h ¼ hH ! 1:
ð50Þ

7. Note that L10 uses V for the celerity of the

atmospheric ‘‘Lamb’’ wave (our C), and c for the

speed of sound (our a).

8. In the course of his derivation, L10 uses the

potentially confusing notation PðxÞ for the factorial:

PðxÞ ¼ Cðx þ 1Þ (x real) or x! (x integer), even

though the latter had been introduced one century

earlier by Kramp (1808).

9. Then, after considerable algebra, L10 derives the

solution of the dispersion through the roots of his

Equation (63 p. 563) reproduced here as (18), the

celerity C of the Lamb wave being given by his

Equation (66), reproduced as (19).

In (18) and (19), we prefer the notation n; instead

of L10’s x; that dimensionless variable having no

relation to an angular frequency.

10. In the limit of large m (/ ! 1), and in the long-

wavelength approximation, n is expected to itself be

large, and one can use Abramowitz and Stegun’s

(1965) Equation (9.3.1) p. 365:

JmðzÞ �
1ffiffiffiffiffiffiffiffiffiffi

2pm
p � e z

2 m

h im

: ð51Þ

Hence

z Jmþ1ðzÞ
2 JmðzÞ

¼ e z2

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðm þ 1Þ

p
� mm

ðm þ 1Þmþ1

¼ e z2

4 ðm þ 1Þ � ½m=ðm þ 1Þ�mþ1=2:

ð52Þ

The solution to (17) is then

n2 ¼ ðbS=b� 1Þ � 4ðm þ 1Þ
e

� ½ðm þ 1Þ=m�mþ1=2

ð53Þ

and substituting into L10’s Equation (66) p. 563,

C2 ¼ gH � e

ð1 þ 1=mÞm � ð1 þ 1=mÞ�1=2: ð54Þ

In the limit m ! 1; the fraction in (54) goes to 1,

and so does the last term in parentheses, so that C2 �
gH; which justifies L10’s claim that the celerity of

the ‘‘Lamb’’ air wave observed during the Krakatau

explosion coincides with that of a would-be tsunami

for a column of height H defined by (12). But as

shown in the present study, that does not imply that

the structure of the wave is that of a tsunami.

However, the approximation (51), on which this

result is based, is valid only for large m, i.e., when

the layering is close to isothermal. If, on the opposite,

/ approaches c (isentropic layering; m ! 5=2), then

the parenthesis ðbS=b� 1Þ ! 0 but n will remain

finite, in practice close to 7, the first non-zero root of

J7=2ðnÞ: The celerity of the Lamb wave will also

approach 0 as

C2 � ð2=7Þ ðbS=b� 1Þ � gH ð55Þ

which is equivalent to L10’s first [un-numbered]

equation on Page 564, except for a typographic error
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in the parenthesis which is identically zero as typeset

in L10.
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Roger, J., & Loevenbruck, A. (2009). The 15 August 2007 Peru

earthquake and tsunami: Influence of the source characteristics

on the tsunami heights. Pure and Applied Geophysics, 166,

211–232.

Holton, J. R. (2004). Dynamic meteorology (4th ed.). Elsevier

Academic Press.

Kanamori, H., & Cipar, J. J. (1974). Focal process of the great

Chilean earthquake, May 22, 1960. Physics of the Earth and

Planetary Interiors, 9, 128–136.

Kanamori, H., Mori, J., & Harkrider, D. G. (1994). Excitation of

atmospheric oscillations by volcanic eruptions. Journal of Geo-

physical Research, 99, 21947–21961.

Kittel, C., & Kroemer, H. (1980). Thermal physics. W.H. Freeman.
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