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[1] We quantify gravity changes after great earthquakes present within the 10 year long
time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields.
Using spherical harmonic normal-mode formulation, the respective source parameters of
moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman
earthquake, the gravity data indicate a composite moment of 1.2� 1023Nm with a dip of
10�, in agreement with the estimate obtained at ultralong seismic periods. For the 2010
Maule earthquake, the GRACE solutions range from 2.0 to 2.7� 1022Nm for dips of
12�–24� and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake,
the estimated scalar moments range from 4.1 to 6.1� 1022Nm, with dips of 9�–19� and
centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes,
the gravity data delineate a composite moment of 1.9� 1022Nm regardless of the centroid
depth, comparing favorably with the total moment of the main ruptures and aftershocks.
The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu
earthquake with M0 ~ 5.0� 1021Nm. We found that the gravity data constrain the focal
mechanism with the centroid only within the upper and lower crustal layers for thrust
events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity
observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior
from changing its volume, thus reducing the negative gravity component. Focal
mechanisms and seismic moments obtained in this study represent the behavior of the
sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.
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1. Introduction

[2] Large-scale processes of geophysical and climate-
related mass redistribution cause changes in the gravitational
potential field. By observing the relative motions of two
identical satellites (orbiting proof masses), the Gravity
Recovery and Climate Experiment (GRACE) mission has
been mapping the spatial distribution of surface and interior
mass flux and transport as well as adjustments in the Earth
system since its launch in 2002 [Tapley et al., 2005]. As
one of such processes, earthquakes cause variations in the
gravitational potential field at a spatial scale up to some
thousands of kilometers and at temporal scales of seconds
to decades, by radiating seismic energy and deforming the
surface and interior permanently and gradually.

[3] Traditional coseismic and postseismic observations
have measured surface displacements such as ground, sea-
floor, and sea-surface motions using a variety of instruments:
seismometers, strainmeters, leveling, GPS, Interferometric
Synthetic Aperture Radar (InSAR), seafloor transponders,
and tsunami gauges. These have been the primary tools used
to understand the rupture dynamics, the spatial extent of
slip, and gradual postseismic changes. However, space-
borne gravimetric observations are also sensitive, in partic-
ular, to interior deformation in the broader region affected
by the rupture, including the oceanic environment largely
inaccessible by traditional measurements. Specifically, they
could fill in the seldom-observed long wavelength spectrum
of earthquake observations as a complement to surface
geodetic measurements and seismic data. In addition, they
reflect an average deformation over a time window much
longer than that accessible from seismic data which is
limited in principle by the period of the Earth’s gravest
mode, 0S2 (3232 s). We examine this new type of earth-
quake observations from GRACE gravimetry, which are
sensitive to changes in gravitational potential which we
express in the formalism of the Earth’s normal modes, as
an alternative to the study of vertical and horizontal
displacements, in order to seek additional information on
earthquake mechanisms and a new perspective on earth-
quake-related processes.
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[4] We scrutinize the observations of global gravitational
potential change after the following recent megathrust earth-
quakes: 2004 Sumatra-Andaman (Mw = 9.15 to 9.3), charac-
terized by a slip greater than 3m over more than 1200 km of
fault length [e.g., Tsai et al., 2005; Chlieh et al., 2007]; 2007
Bengkulu (Sumatra; Mw = 8.5) [e.g., Borrero et al., 2009];
2010 Maule, Chile (Mw = 8.8) with slip greater than 3m over
450 km [e.g., Pollitz, et al., 2011]; and 2011 Tohoku-Oki
(Mw� 9.0) with slip greater than 5m over 330 km [e.g.,
Simons et al., 2011]. In addition to these thrust sources, and
for the first time, we analyze gravitational perturbations due
to the sequence of great strike-slip earthquakes (cumulative
Mw� 8.7) which ruptured in 2012 100–200 km southwest of
the Sumatra subduction zone [e.g., Yue et al., 2012].
[5] Such gravity changes are caused dominantly by large-

scale density change in the region surrounding the rupture
and by surface deformation, including interaction with the
ocean, as suggested by Han et al. [2006] and others there-
after. The surface deformation, however, would be expected
to be small in large-scale gravity change for vertical strike-
slip earthquakes. Sea level changes due to coseismic gravita-
tional potential changes have been addressed more recently
by de Linage et al. [2009], Broerse et al. [2011], and
Cambiotti et al. [2011]. While most of these analyses, in-
cluding Heki and Matsuo [2010], Matsuo and Heki [2011],
and Wang et al. [2012], used the monthly time series of
GRACE gravity maps, Han et al. [2010, 2011] also directly
exploited the fundamental observations of range-rate change
after earthquakes to optimize spatial and temporal resolu-
tion. Han et al. [2011] and Cambiotti et al. [2012] inverted
the GRACE range-rate and monthly gravity data, respec-
tively, to quantify the fault parameters of the 2011
Tohoku-Oki earthquake. Various numerical modeling
approaches from a half-space [Okubo, 1992] to a layered
spherical Earth model [Pollitz, 1996], considering the ocean
layer and sea level feedback [Broerse et al., 2011; Cambiotti
et al., 2011], have been used to compute synthetic gravity
changes. Furthermore, the postseismic gravity change after
the 2004 Sumatra-Andaman rupture was also identified and
such observations were interpreted considering the Earth’s
rheological response to mega-earthquakes [Han et al.,
2008; Panet et al., 2010; Hoechner et al., 2011] and the
diffusion of water in the mantle [Ogawa and Heki, 2007].
[6] In this study, we present a theoretical model of the

coseismic gravitational potential for a spherical Earth on the
basis of gravitational potential normal mode summation, as
also envisaged by Chao and Gross [1987] and de Linage
et al. [2009]. We particularly examine the gravitational char-
acteristics of normal modes as a function of the Earth’s elastic
structure and the earthquake source depth. We evaluate and
discuss the effects of surficial layering (including the ocean)
and density change on the gravity change. Next, we formulate
inverse models to estimate the moment tensor components and
subsequently fault parameters from the GRACE data for each
earthquake. We use the readily available level 2 (L2) data
products from the GRACEmission that implies monthly snap-
shots of global gravitational potential changes with a spatial
resolution of 400–500 km. Finally, we apply this inversion
approach to characterize these earthquakes with (point) cen-
troid source representation; discuss the fault solution estimates
of moment, dip, strike, rake and depth, and the trade-offs
among these parameters; and compare these great earthquakes

based on homogeneous data, consistent gravity modeling,
and uniform inversion methodology. Although the gradual
postseismic changes after the rupture were also evident in
the data, this study is focused on the coseismic change in the
gravitational potential and leaves out the longer-term
postseismic response to a future investigation.

2. Coseismic Gravitational Potential Change Due
to a Double-Couple Source

[7] We derive the expression of coseismic changes in
gravitational potential due to a point dislocation on the basis
of gravitational potential normal mode summation. Our goal
is to obtain the representation in terms of spherical harmonic
coefficients for the coseismic gravitational potential changes
as explicit functions of the parameters of a point-source
double-couple (scalar seismic moment M0, dip d, rake l,
and strike ff). In the end, we will use these results to analyze
global gravity data such as from GRACE to invert earth-
quake source processes.
[8] The concept that gravity participates in the restoring

force controlling the oscillation of a deformed elastic Earth
was first expressed by Bromwich [1898], following Lamb’s
[1882] estimate of its period of free oscillation. Ever since
Love’s [1911] classical study, which provided the first theo-
retical computation of the fundamental mode of a compress-
ible, elastic gravitating Earth, all detailed computations of
the Earth’s normal modes [e.g., Pekeris and Jarosch, 1958;
Gilbert and Backus, 1968] have included the relevant varia-
tions of its gravitational potential. Because they do not result
in changes in its gravity field, the torsional modes of oscilla-
tion of the Earth will be ignored from the rest of this paper.
[9] The problem of the excitation of a normal mode by a

seismic source was first described by Alterman et al. [1959]
and given a simple and elegant formulation by Gilbert
[1970]. This set the stage for the use of normal mode summa-
tion to synthesize either seismic waves, which express
the transient deformation following an earthquake [e.g.,
Kanamori and Cipar, 1974] or geodetic displacements, which
express permanent coseismic deformation [Pollitz, 1996].
Thus, it should be possible to similarly describe any static or
transient changes in the Earth’s gravitational potential on the
basis of a summation of its normal modes. Indeed, this ap-
proach goes back to Longman [1962, 1963] in the simpler case
of the loading of the Earth by a point mass.
[10] In the notation of Kanamori and Cipar [1974,

Figure 10] and Kanamori and Given [1981, Figure 1], we
recall that the radial displacement ur (as would be recorded
by a vertical seismometer), excited by a point-source double-
couple can be expanded as

ur r; θ;f; tð Þ ¼ M0�
X
n;l

y1 rð Þ½�sRK0Pl;0 cos θð Þ þ qRK1Pl;1 cos θð Þ

�pRK2Pl;2 cos θð Þ�
� 1� cos nol tð Þ� exp �nol t=2nQlð Þ½ �:

(1)

[11] The definition of the associated Legendre functions
Pl,m used here is such that they are normalized to a constant
integral of 4p on the sphere, which relates them to the
Legendre functions Pm

l used, for example, by Kanamori
and Cipar [1974] through
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Pl;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2l þ 1ð Þ l � mð Þ!

l þ mð Þ!

s
�Pm

l ; (2)

where k = 1 is for m = 0 and k = 2 otherwise. The expansion
in equation (1) uses a system of spherical harmonics whose
pole is chosen at the seismic epicenter, and whose primary
meridian is taken along the dislocation fault strike. Under
this geometry, a point-source double-couple excites only
the modes of azimuthal orders m = 0, � 1, and � 2, allowing
the expansion (1) to contain only three terms inside the first
bracket; sR, qR, and pR are then trigonometric parameters
depending only on the geometry of the dislocation (dip angle
d and rake l), and on the longitude f of the receiver, mea-
sured from the fault strike [Kanamori and Cipar, 1974,
Figure 10]:

sR ¼ sinl sind cosd;
qR ¼ sinl cos2d sinfþ cosl cosd cosf;
pR ¼ cosl sind sin2f� sinl sind cosd cos2f;
f ¼ ff � fr ¼ flon þ ff � p;

(3)

where ff is the azimuth of the fault strike, and fr the azi-
muth of the small arc of great circle departing the source to
the receiver, both measured clockwise from local north at
the epicenter (alternatively, fr =p�flon, where flon would
be the longitude of the receiver in a frame where the pole is
at the epicenter, measured counterclockwise from the direc-
tion of local south at the source). y1 is the vertical displace-
ment component of the eigenfunction (dependent on degree l
and overtone number n) [Alterman et al., 1959; Saito, 1967].
The functions K0, K1, and K2, of which explicit forms are
given in Kanamori and Cipar [1974], describe the excitation
of a full Earth oscillation by a seismic source, as such de-
pends only on l and n as well as on the specific Earth model
used, and of course on the depth ds of the source, but no
longer on the particular orientation of either the source or
the receiver. The temporal part expressed as the second
bracket of equation (1) consists of a static term describing
the permanent deformation of the Earth (expressed as the
“1” in the bracket) and of a transient oscillatory term “seismic
waves” corresponding to the attenuated sinusoid. An equiva-
lent expression using moment tensor components can be
found in Kanamori and Given [1981] and Pollitz [1996].

[12] This formalism can be extended immediately to the
case of the variations in gravitational potential c(r,θ,flon)
by replacing the first component y1 of the eigenfunction by
the fifth one, y5, as introduced by Alterman et al. [1959].
In the particular case of the permanent “static” variation of
the potential at the Earth’s surface (r= a), one simply obtains

c θ;flonð Þ ¼ M0�
X
n;l

y5 að Þ�½�sRK0Pl;0 cos θð Þ

þqRK1Pl;1 cos θð Þ � pRK2Pl;2 cosθð Þ�:

(4)

[13] Note that y5 is computed routinely as part of the solu-
tion of the full elastogravitational eigenproblem of the free
oscillation and that its inclusion is particularly critical to the
accurate determination of the period of the gravest modes, in
particular, the radial ones (l=0). However, the information
contained in y5 has rarely been used, since most applications
of normal mode theory have been limited to seismology,
before the advent of detailed large-scale gravity observations,
notably with programs such as GRACE [Tapley et al., 2005].
[14] By substituting equation (3), equation (4) can be re-

written as follows:

c θ;flonð Þ ¼ GM

a

X
l

X2
m¼0

Pl;m cosθð Þ Cl;m cosmflon þ Sl;m sinmflon

� �
;

(5)

where G is the universal gravitational constant, M the mass
of the Earth, and a its radius. The five non-trivial dimension-
less coefficients are defined, with the moment tensor compo-
nents following the convention by Aki and Richards [1980]
as follows:

Cl;0 ¼ a

GM

X
n

K0 dsð Þy5 að Þ
" #

� �Mrr

2

� �
; (6a)

Cl;1 ¼ a

GM

X
n

K1 dsð Þy5 að Þ
" #

� Mrθð Þ; (6b)

Sl;1 ¼ a

GM

X
n

K1 dsð Þy5 að Þ
" #

� Mrf
� �

; (6c)

Cl;2 ¼ a

GM

X
n

K2 dsð Þy5 að Þ
" #

� Mθθ �Mff

2

� �
; (6d)

(a) (b) (c)

Figure 1. Spectrum of the three gravitational excitation functions evaluated at depths ds= 10, 20, and
30 km; (a) F0 dsð Þ ¼

X
n

K0 dsð Þy5 að Þ (isotropic, m = 0), (b) F1 dsð Þ ¼
X
n

K1 dsð Þy5 að Þ (dipolar, m= 1),

and (c) F2 dsð Þ ¼
X
n

K2 dsð Þy5 að Þ (quadrupolar, m = 2). For Figure 1a, the isotropic function is also eval-

uated at the upper and lower bounds of each distinct layer in PREM (i.e., upper crust, lower crust, and
upper mantle) and shown as dashed lines.
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Sl;2 ¼ a

GM

X
n

K2 dsð Þy5 að Þ
" #

� Mθf
� �

; (6e)

where Mrr =M0 sin 2d sin l,

Mrθ ¼ �M0 cosd cosl cosff þ cos2d sinl sinff

	 

;

Mrf ¼ �M0 � cosd cosl sinff þ cos2d sinl cosff

	 

;

Mθθ �Mff ¼ �M0 2 sind cosl� sin2ff � sin2d sinl� cos2ff

	 

; and

Mθf ¼ �M0
1

2
sin2d sinl sin2ff þ sind cosl cos2ff

� �
:

[15] In equation (6) and for each value of degree l, the sum-
mations in the functions Fm ¼

X
n

Km dsð Þy5 að Þ, (m=0, 1, 2)

are performed over the overtone number n on which the indi-
vidual values of y5(a) and the Km(ds) will of course depend. In
particular, these functions of l are now characteristic of the
(laterally homogeneous) Earth model, but no longer depend
on any property of the seismic source (excluding depth
through the Km(ds)), and as such, they can be precomputed
for any combination of l and ds.
[16] These functions are closely related to the coefficients

ylm Sð Þ
1 used to expand radial deformation by Pollitz [1996,
equation (3a)], except that we express them with sines and
cosines as opposed to imaginary exponentials and that
Pollitz [1996] considered only elastic (and not gravitational)
restoring forces. Pollitz [1992] showed in considerable detail
(including the effect of gravity) that it is possible to compute
directly the functions Fm from the equations of equilibrium
of the deformed Earth, rather than explicitly summing over
an a priori infinite number of overtones n, as in equation
(6). We follow here an approach similar to Piersanti
et al.’s [1995] and Pollitz et al.’s [2006] studies, which con-
sists of casting the static problem of the equilibrium of a lay-
ered gravitating elastic Earth in the same formalism as the
dynamic one for a free oscillation, but of course in the ab-
sence of any time-dependent terms, following in the foot-
steps of Longman [1963] and Smylie and Mansinha [1971].
[17] In this framework and given a point-source double-

couple of prescribed geometry and amplitude (M0), imbedded
at the depth ds in an elastic Earth, Pollitz’ [1996] formal-
ism consists of expanding its field of discontinuities
(obtained under a representation theorem) onto spherical
harmonics, and of defining, for each degree l and orders
m=0, 1, and 2, an equivalent discontinuity at the depth ds in
the four components of the eigenvector y of the static problem
(which remains independent of m). In the presence of gravity,
we generalize it by imposing the continuity of the additional
components, y5 and y6, for r= rs (rs= a� ds), thus imposing
six boundary conditions on the full six-dimensional
elastogravitational eigenvector y. Following Pollitz et al.
[2006] and because y is continuous at all depths d 6¼ ds, except
at the core-mantle boundary as discussed for example by
Smylie and Mansinha [1971], it can be integrated continu-
ously upwards to r ¼ r�s from the core-mantle boundary,
where initial conditions feature three degrees of freedom,
detailed for example by Vermeersen et al. [1996], in the
framework of Chinnery’s [1975] explanation of the so-called
Longman’s paradox. Similarly, it can be integrated from the
surface of the Earth (where there are again three degrees of
freedom) downwards to rþs . For each m=0, 1, and 2, the six

boundary conditions at r= rs define the proper combination
of initial conditions from which the value of y5(a) can be com-
puted and equated to Fm.
[18] As mentioned above, equations in (6) are relatively

simple because they are written in a particular system of
spherical harmonics, where the pole is at the seismic epicen-
ter and the prime meridian oriented along the local south,
since under this geometry, a point-source double-couple ex-
cites only azimuthal orders m = 0, � 1, and � 2. That frame
will hereafter be identified with a superscript s. However,
when studying the gravity field of the Earth, the convention
is to use the geographic spherical harmonics, defined about
its axis of rotation (the North Pole) and the prime Greenwich
meridian, hereafter be identified with a superscript g. There-
fore, one has to project one system of spherical harmonics
onto the other, in order to express equation (6) in the geo-
graphic harmonics; this relatively classical problem [e.g.,
Sato, 1950; Brink and Satchler, 1968; Stein and Geller,
1977] is carried out as a succession of two solid rotations:
The first one (of amplitude θs, the colatitude of the epicenter)
is taken about the pole of the geographic meridian going
through the epicenter and brings back the pole of the spher-
ical harmonics to the geographic North Pole, and the second
one (of amplitude�fs, the opposite of the longitude of the
epicenter) is taken about the axis of rotation of the Earth
and restores the Greenwich meridian as the primary one.
[19] Regrouping the coefficientsCl,i and Sl,i in equation (6) in

the form of a vectorXs
l (X

s
l;�2 ¼ Sl;2, X s

l;�1 ¼ Sl;1, X s
l;0 ¼ Cl;0,

X s
l;1 ¼ Cl;1, andX s

l;2 ¼ Cl;2), the projection onto the geographic
harmonics is expressed as a new vector Xg

l :

X g
l;m M0;ff d; l; ds; θs;fs

	 

¼

X2
i¼�2

El
m;i θs;fsð ÞX s

l;i M0;ff d; l; ds
	 


�l≤m≤l; (7)

where the factor E expresses the combination of two rotations.
Note that despite its apparent complexity, equation (7) remains
a completely linear operation on the various components of
the vector Xs

l .
[20] A fundamental aspect of equation (7) is that while the

potential field resulting from a dislocation expressed as a
point-source double-couple could be expanded on harmonics
of orders m= 0, � 1, and � 2 in the source-based system
(Xs

l being five-dimensional), it will project on all orders
(�l ≤m ≤ l) in the geographic system centered at the North
Pole (Xg

l being (2 l + 1)-dimensional). Note that a similar ap-
proach is used when studying the splitting of the free oscil-
lations of the Earth due to rotation and ellipticity, with the
identical result that normal modes excited by an earthquake
are split into all of their (2 l + 1) singlets (�l ≤m ≤ l ) [Stein
and Geller, 1977].

3. Coseismic Gravitational Response Functions

[21] We characterize the coseismic changes in gravita-
tional potential c through the functions

Fm dsð Þ ¼
X
n

Km dsð Þy5 að Þ; (8)

with orders m= 0, 1, 2 for isotropic, dipolar, and quadrupolar
excitations, respectively. They represent the Earth’s gravi-
metric response to faulting by a double-couple and depend
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only on Earth structure, degree l, and source depth ds. Figure 1
presents examples of these functions, computed for the Pre-
liminary Reference Earth Model (PREM) model [Dziewonski
and Anderson, 1981] at three representative depths (10, 20,
and 30 km), sampling the upper crustal (3–15 km), lower
crustal (15–24 km), and upper mantle (24–80 km) layers of
the model.
[22] As shown in Figure 1, the behavior with l of the three

functions is significantly different. Both F1 and F2 are
weakly dependent on depth and monotonic (respectively, in-
creasing and decreasing functions of l) functions, while F0

strongly depends on depth, to the extent that it even reverses
sign, with the nodal degree decreasing with increasing
depth. This strong dependence of F0 on depth is further in-
vestigated by computing its values at the upper and lower
bounds of each source layer, shown as dashed lines on
Figure 1a; they suggest a moderate dependence of F0 with
depth within a layer, but a significant one between layers,
which illustrates the critical dependence of the coefficients
K0 on the elastic moduli at the source. The spatial pattern
of Fm at different depths is shown in Figure 2, truncated at
degree 50 (i.e., spatial resolution of 400 km). The isotropic
term, F0, is dominant when the source is at the lower depth,
while the non-isotropics, F1 and F2, become more pro-
nounced as the source depth increases.
[23] Several features of Figures 1 and 2 are straightfor-

ward to interpret in the context of classical results of normal
mode seismology. In particular, we recall that the strike-slip
coefficient K2 is proportional to y3/rs. In the vicinity of the
Earth’s surface, where the shear stress y4 vanishes, the

logarithmic derivative of this quantity takes the value
r
y3
� ddr y3

r

� � ¼ � 1
r
y1
y3
� � l

a
uz
ux
, on the order of � l/a for l> 1,

and for branches of modes featuring a reasonably circular
ground motion at the surface (e.g., fundamental Rayleigh
waves for which this ratio approaches 1.5). Thus, the charac-
teristic depth for the decay of K2 near the surface is on the
order of a/l, which means that K2 is essentially independent
of depth for shallow earthquakes, a well-known property of
mantle Rayleigh waves. This explains the lack of depen-
dence of F2 on depth, as exhibited in Figure 1c. By contrast,
the coefficient K1, proportional to y4/m, vanishes at the sur-
face, leading to the classical singularity in excitation by
dip-slip components at shallow depths [e.g., Kanamori and
Given, 1981]. For shallow sources (ds much less than one
wavelength), y4 is expected to be continuous and grow line-
arly with depth; however, m will suffer discontinuities in the
various layers of the Earth, leading to a much slower growth
(or even an irregular behavior) of K1 with depth. As for the
isotropic coefficient K0, involved (together with K2) in the
case of a dipping (e.g., thrust) fault, its more complex ex-
pression as a function of the eigenvector y precludes any
simple interpretation of its variation with depth.
[24] The physical origin of the change in gravitational po-

tential at the surface, y5(a), can be separated into two contri-
butions, namely (i) a displacement of the free boundary of
the Earth, resulting in the filling of an initially void volume
by material of finite density and (ii) the effect on c at the sur-
face of changes in density within the interior of the planet,
resulting from its deformation, including that of surfaces of

Figure 2. Spatial patterns of the functions Fm(ds) in the vicinity of the source, evaluated at depths of 10,
20, and 30 km.
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discontinuity, such as the crust-mantle interface. For (ii), the
gravitational effect of the (coseismic) change of discontinu-
ity in interior density stratification is considerably smaller
than the interior density change by compression and/or dila-
tation [Pollitz, 1997; Han et al., 2006]. In the limit of large-
scale gravity changes (a few 100 km), the effect from (ii) is
as large as (i), while (i) overwhelms (ii) at much smaller
scales, as shown in Han et al. [2006].
[25] The change in gravitational potential due to the defor-

mation of the surface, F Bð Þ
m , is in the nature of a Bouguer

effect, and can be easily computed from the radial dis-
placement component of the eigenvector, y1(a). In the limit
y1< a/l (i.e., the vertical deformation being smaller than its
lateral dimension), the contributing material can be modeled
as a thin layer of thickness y1 and density Δr (crustal density
for inland earthquakes, reduced by seawater density for
undersea ones), leading the classical result [Jeffreys, 1976;
Turcotte et al., 1981]:

F Bð Þ
m ¼

X
n

Km dsð Þ 4pGaΔr
2l þ 1ð Þ y1 að Þ; m ¼ 0; 1; 2: (9)

[26] The degree-dependent scale factor multiplying the y1
eigenfunction is needed to convert the thin layer mass anom-
aly Δry1(a) into the gravitational potential anomaly at the
surface. The contribution from the interior deformation
(mostly due to coseismic dilatation or compression of the
material surrounding the source) is computed by removing
this superficial (or Bouguer) contribution from the full vari-
ation Fm as

F Ið Þ
m ¼ Fm � F Bð Þ

m

¼
X
n

Km dsð Þ y5 að Þ � 4pGaΔr
2l þ 1ð Þ y1 að Þ

� �
; m ¼ 0; 1; 2: (10)

[27] Although we did include self-gravitation and loading
when computing the functions Fm and for the sake of simplic-
ity, they are not discussed here, as their contributions are con-
siderably smaller than the simple Bouguer effect expressed by
equation (10); see de Linage et al. [2009] and Cambiotti et al.
[2011] for details. The degree-dependent behaviors of
equations (9) and (10) at three different depths are shown in
Figure 3, where the sign for the surface deformation function
form=0 was reversed in the plot. As for the case of total grav-
ity change in Figure 1, the depth-dependence is found to be

significant in the isotropic case, where the interior deformation
shows even greater depth-dependence. For the isotropic com-
ponent, which is directly related to dilatation at the source (see

Appendix A), the interior deformation F Ið Þ
0 ; m ¼ 0ð Þ contrib-

utes more signal than the Bouguer term F Bð Þ
0 when the source

locates at shallower depth (10 km, within the upper crust)

where the material is more compressible. In contrast, F Bð Þ
0 be-

comes prominent when the source is deeper (i.e., 30 km,
within the upper mantle) where the material is less compress-
ible. In the dipolar case (m=1), the change in potential is

largely due to the Bouguer term F Bð Þ
1 at all depths, while in

the quadrupolar case (m=2), F Ið Þ
2 remains prominent at all

depths.
[28] We computed the coseismic potential change from a

synthetic double-couple at different depths (using a com-
pressible Earth model with an ocean layer). A centroid with
a scalar moment M0= 5.0� 1022Nm (Mw= 9.0) and strike
ff= 180�, dip d = 15�, and rake l= 90� was used. The
gravity changes (up to degree and order 40, or equivalently
a spatial resolution of 500 km) from the same seismic source
but at different depths are compared in Figure 4. The effect
of the isotropic term (m = 0), mostly responsible for a large
central negative anomaly, decreases with increasing depths
and, as a result, the other terms (m = 1, 2) that are relatively
constant with depth become more prominent in the total
coseismic gravity change.

3.1. Moment Dip Trade-off

[29] It has been long known in the seismological commu-
nity that the inversion of seismic moment tensors suffers a
singularity for shallow sources [e.g., Kanamori and Given,
1981]. This is due to the fact that the dipolar coefficient
K1, proportional to the shear stress y4, vanishes at the surface
with the result that the two components Mr’ and Mrθ do not
excite seismic modes at or near the surface. Conversely, they
cannot be resolved for a surficial source (or are poorly re-
solved for a shallow source) from seismograms. This classi-
cal singularity results in a trade-off between scalar moment
M0 and dip angle d.
[30] For thrust earthquakes (l� 90�), the observations of

isotropic (m = 0) and quadrupolar (m= 2) gravity response
(equations (6a) and (6d)) constrain only M0 sin 2d. The
complementary information required to separate the scalar

(a) (c)(b)

Figure 3. Same as Figure 1, with function Fm(ds) separated into their surface (F Bð Þ
m ) and interior (F Ið Þ

m )
contributions to the total gravitational potential. Note that the sign of F Bð Þ

0 (shown as solid line) has been
reversed in Figure 3a for plotting clarity.
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moment M0 and dip d comes from the observations of the
dipolar (m= 1) gravity response (equation (6c)) containing
a factor of M0 cos 2d. The resolvability of M0 and d from
(noisy) gravity measurements would, therefore, be depen-
dent on the ratio of Sl,1 (and Cl,1 depending on strike)
to Cl,0. Taking a reasonable range for shallow-dip events
(5� ≤ d ≤ 30�), the ratio is approximately given by

O Sl;1
Cl;0

��� ���	 

� O

X
n

K1 dsð Þy5 að ÞX
n

1

2
K0 dsð Þy5 að Þ

��������
��������

0BB@
1CCA, which is expected to

go to zero with all K1 coefficients at the surface. Assuming
that the accuracy of satellite gravity measurements depends

only on degree l, the signal-to-noise ratio (SNR) of Sl,1 and
Cl,0 can be related through:

SNR Sl;1
� �

SNR Cl;0

� � � 2
F1 ds; lð Þ
F0 ds; lð Þ
���� ����: (11)

[31] Figure 5 presents the ratios (11) for various source
depths. As expected and by the analogy with seismological
inversions [Kanamori and Given, 1981], for very shallow
sources, this ratio remains small over the entire bandwidth
(l ≤ 50) accessible by the GRACE satellites. At such shallow
depths the dipolar term (m = 1) is simply too poorly excited
to resolve both M0 and d from a noisy large-scale satellite
gravity dataset. However, for other sources within the lower

(a) (c)(b)

Figure 4. Examples of synthetic gravity changes from a double-couple seismic source at different depths
with the layered Earth model are shown in the top panels. The focal mechanism parameters are given by
M0= 5.0� 1022Nm, ff= 180�, d = 15�, and l = 90�. The source is located at the center of each diagram
within the upper crust (10 km), lower crust (20 km), and upper mantle (30 km). The lower panels show
the contribution to the total gravity change Figures 4a–4c from each order (m= 0, 1, and 2, respectively).
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crust and the upper mantle, SNR{Sl,1} becomes comparable
to SNR{Cl,0}, likely allowing the resolution of M0 and d
from the GRACE gravity observations.

4. Observations of Global Gravity Field and
Spatial Localization

[32] As part of the GRACE project, one month’s worth of
orbital tracking data of the GRACE satellites have been rou-
tinely analyzed to obtain an “average” snapshot of the global
gravity field at each month since April 2002. Such a snapshot
is represented by and provided as a set of spherical harmonic
coefficients, known as L2 product. In this study, wewill exam-
ine those L2 spherical harmonic coefficient data from April
2002 to September 2012. The L2 data have been continuously
updated with the improved processing strategy and back-
ground models including atmosphere and ocean variability.
We used the most recent Release-5 (RL5) L2 data product
except for 2002, for which the Release-4 (RL4) product was
used, since the RL5 product has, at present, not yet been
processed for these years [Bettadpur et al., 2012].
[33] The coseismic gravitational perturbation tends to be

spatially localized around the epicenter, and thus, its energy
is smeared out among all spherical harmonic coefficients.
Due to other gravitational variations from continental-scale
mass variations (mainly in association with seasonal climate
changes), the earthquake signal may not be apparent directly
from the L2 data. Such “local” signal can be better delin-
eated from the “global” spherical harmonic coefficients by
applying a spatial window around the region of interest.
Simons et al. [1997] and Wieczorek and Simons [2005]
developed an optimal windowing function to extract the spa-
tially confined signal by minimizing the spatial truncation
(leakage) effect. Han and Simons [2008] applied this tech-
nique successfully to identify the 2004 Sumatra-Andaman
earthquake signal out of the spherical harmonic coefficients
from GRACE. Han and Ditmar [2008] discussed how
the SNR of non-stationary signals may be substantially
underestimated, if not localized, and suggested a better

way to quantify the SNR of the local signal from the spher-
ical harmonic coefficient data under stationary noise.
[34] The optimal spatial windowing function h(θ), often iso-

tropic and band-limited, is found by maximizing its energy
within a confined region of interest [Wieczorek and Simons,
2005]. Once the windowing function is determined, one can
obtain spherical harmonic coefficients of the spatially local-
ized signals using a “convolution-like” formula provided in
equation (10) of Wieczorek and Simons [2005] and given as:

Ch
lm ¼ �1ð Þm

XLh
j¼0

Xlþj

i¼ l�jj j
hj Cim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iþ 1ð Þ 2jþ 1ð Þ 2l þ 1ð Þ

p
i j l
0 0 0

� �
i j l
m 0 �m

� �
;

(12)

where Lh is the maximum expansion degree of the
windowing function and hj is the expansion coefficients of
the zonal (isotropic) window h(θ). The last two parentheses
are Wigner-3j functions. Cim is the (original) spherical
harmonic coefficient and Ch

lm is the localized coefficient
highlighting the signals over the region.
[35] As implied by equation (12), the coefficient of the

localized (or windowed) signal is nothing but a linear combi-
nation of the original coefficients with the weights defined
by the choice of the windowing function. The localized coef-
ficient of degree l is computed with the original coefficients
within the bandwidth [max(0, l� Lh), (l+Lh)]. If the original
signal is known only to a certain degree such as Ls, it can be
readily seen from the upper bound of the summation in
equation (12) that the permissible range of the localized coef-
ficients is limited to Ls�Lh. Also the windowed spectra of the
low degrees (l< Lh) can be biased as noted in Section 5.1 of
Wieczorek and Simons [2005]. Therefore, we use the localized
spherical harmonic coefficients within the bandwidth, Lh+1
to Ls�Lh, from monthly GRACE L2 data.
[36] Figure 6 shows signals for recent great earthquakes

(the 2004 Sumatra-Andaman, 2007 Bengkulu, 2010 Maule
(Chile), 2011 Tohoku-Oki, and 2012 Indian Ocean events)
that are in a detectable range with GRACE gravity data.
The spatial maps of coseismic gravity change computed
from Global Centroid Moment Tensor (GCMT) solutions
of each respective event are shown in Figures 6a-6e, with
the spherical circle that delineates the area of localization
with the spherical cap of radius θh. The cross section of each
spatial windowing function is shown in Figures 6f–6j,
respectively. The relative amplitude is presented over the
spherical angular distance θ from the center of the cap.
The expansion degree Lh is fixed at 20 and the cap radius
θh is chosen to capture most of the (expected) coseismic
gravity signal, mainly depending on the size of the earthquake.
This provides the only optimally localized windowing func-
tion for each earthquake (that is, the Shannon number is equal
to 2 as in Wieczorek and Simons [2005]). The amplitude of
each windowing function becomes approximately 1% of the
maximum amplitude beyond the spherical cap of radius θh,
indicating that h(θ) is nearly perfectly concentrated within
the spherical cap. The concentration ratio g, showing how
much power of the window function is concentrated within
the spherical cap, approaches 99% for all cases.
[37] The temporal variability (in terms of root-mean-square,

RMS) of the monthly GRACE L2 data, after localization is
applied in the respective areas, is shown in Figures 6k–6o,

0

1

2

3

0 20 40 60 80

ds =  5 km

ds = 10 km

ds = 20 km

ds = 30 km

Degree

Figure 5. Ratio of the dipolar gravity response F1(ds) to
the isotropic response F0(ds) as function of degree l. This ra-
tio characterizes the resolvability of moment from dip angle
when inverting gravity observations, as a function of degree
l for various source depths.
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for each earthquake, within the bandwidth, Lh + 1 to Ls�Lh
(i.e., from 21 to 40 in our case since Ls = 60 and Lh = 20).
This is suggestive of inherent temporal variability of the
gravity field (mass redistribution) in each region and of the
observational noise. The gravity signal strength predicted
from GCMT solution of each event is also depicted after
the same localization is applied. The ratio of the (predicted)
coseismic gravitational perturbation to the GRACE data
variability approaches 6, 0.5, 1, 3, and 1.5, respectively
for each event, within most of the bandwidth from degrees
21 to 40. In Section 6, we will examine the time series of
these localized L2 coefficient observations and invert them
to determine the fault parameters of each earthquake.

5. Linear and Nonlinear Inversion

[38] So far, we examined the forward model of the gravi-
tational potential change in response to a point-source

double-couple, expressed in terms of the moment tensor as
in equation (6) and in particular, its dependence on depth.
The spatial localization of global GRACE gravitational
potential data was introduced for identifying and analyzing
coseismic gravity changes around various earthquake
regions. In this section, we discuss how we determine the
moment tensor from the “localized” GRACE data and, sub-
sequently, invert the double-couple source parameters from
the moment tensor solutions.

5.1. Linear Estimation of Moment Tensor from Gravity
Data

[39] The estimation of the moment tensor components
from a series of geopotential observations is straightforward
due to its linearity, when the data are expressed in terms of a
series of spherical harmonic coefficients, as discussed in
Section 2. In order to invert the dataset of localized GRACE
gravitational potential coefficients into the moment tensor m,

(a)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(b) (d)(c) (e)

Figure 6. (a–e) Synthetic gravity changes computed from centroid moment tensor (CMT) solutions for the
2004 Sumatra-Andaman, 2007 Bengkulu, 2010 Maule, 2011 Tohoku-Oki, and 2012 Indian Ocean earth-
quakes, respectively. The black circle delineates the spherical cap of radius θh as the region of localization
where the spatial windowing function h(θ) is concentrated; (f–j) cross sections showing the relative amplitude
of h(θ), expanded to degree 20 (Lh= 20), but with a different cap radius (θh) for each event; (k–o) degree RMS
spectrum (square root of power spectrum in mGal) of synthetic coseismic gravitational potential (blue line)
and of average variability of monthly GRACEL2 data (red line) after applying an identical spatial windowing
function in each region. The data variability (red line) includes the gravity signal variability (e.g., seasonal
change) as well as the GRACE instrument noise. The ratio of the (predicted) coseismic gravitational pertur-
bation to the GRACE data variability approaches 6, 0.5, 1, 3, and 1.5, respectively for each event.
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we express the forward problem as a succession of three
operations.
[40] First, as expressed in equation (6), we multiply the

tensor of Green’s functions evaluated at the seismic source
depth ds by the moment tensor:

Xs ¼ F dsð Þm; (13)

where F(ds) regroups, for all used values of l, the five
functions Fm discussed in Section 3;m = (Mrr,Mrθ,Mrf,Mθθ
Mff�Mθf) represents the five independent unknown mo-
ment tensor components; the resulting vector Xs regroups,
for all values of l, the spherical harmonic coefficients in
equation (6). Second, we apply the rotations expressing the
change of frames, and obtain

Xg ¼ R θs;fsð ÞXs; (14)

where the dimension of the vector Xg is the sum of (2l + 1)
over the range [lmin, lmax] used in the inversion, and R
(θs,fs) is a rotation matrix consisting of all the elements
El
m;i of equation (7). Third, the spatial localization discussed

in Section 4 is applied, leading to

XL ¼ L θs;fsð ÞXg; (15)

where L(θs,fs) is a matrix expressing the operation in
equation (12).
[41] At this point, XL regroups the gravitational potential

coefficients expressed in the geographic frame, and localized
around the epicenter (θs,fs), as excited by the double-couple
source described by m. The inversion then consists of using
the GRACE dataset of observed coseismic change in gravi-
tational potential x (itself expended onto spherical har-
monics) to solve for m through

L θs;fsð Þx ¼ L θs;fsð ÞR θs; ;fsð ÞF dsð Þmþ e; (16)

where e is the noise in the GRACE dataset. Note that L ap-
pears on both sides of (16) because e is determined only
when the localized data Lx is sought from noisy time series
of GRACE data. Finally, simple least squares is used to de-
termine the estimate of the moment tensor components, m̂,
and its covariance matrix, Cfm̂g.

5.2. Nonlinear Estimation of Double-Couple From
Moment Tensor

[42] The determination of double-couple source parameters
(i.e., M0, ff, d, and l) from moment tensor components con-
sists of solving backwards the equations in (6). While point-
source double-couples are characterized by four parameters,
they do not constitute a four-dimensional vector space, and
moment tensor inversions have to be carried out in a five-
dimensional vector space, fostering both nonlinearity and
non-uniqueness. We use a standard approach in seismology
to derive two nodal plane solutions of strike, dip, and rake
by using a computer code (bb.m, a Matlab code written by
Oliver Boyd, based on mij2d.f, a FORTRAN code by Chen Ji)
available from the website [www.ceri.memphis.edu/people/
oldboyd/Software/Software.html]. They are used as initial so-
lutions for our refined inversion considering variable uncer-
tainties in moment tensor components as described below.
[43] First of all, we examine correlation among the fault

parameters. For low-dip (d� 0) earthquakes as in most

of cases in this study, the moment tensor components are
approximated (to the first order) to Mrr�M02d sin l,
Mrθ��M0 cos(ff� l), Mrf�M0 sin(ff� l), Mθθ�Mff �
�M02d sin(2ff� l), and Mθf��M0d cos(2ff� l). It indi-
catesMrθ andMrfwould be dominant andff� l (not individ-
ually) would be better-constrained from the moment tensor.
The parameters such as ff and l would be tightly coupled in
a manner that ff� l is constant. Han et al. [2011] discussed
this trade-off between strike and rake found from various
seismic solutions and GRACE data inversion for the 2011
Tohoku-Oki earthquake.
[44] The correlation among double-couple parameters can

be quantified by examining a covariance matrix of the
double-couple solution. We derive it by introducing a small
perturbation in the double-couple parameters as follows:

M0 ¼ eM0 1þ d�ð Þ; (17a)

ff ¼ eff þ dff ; (17b)

d ¼ edþ dd; (17c)

l ¼ elþ dl: (17d)

[45] The perturbation in the vector of moment tensor com-
ponents Δm due to perturbation in double-couple parameters
d is simply written as Δm�Bd, where B is a matrix

consisting of partial derivatives, e.g., dMrr
d� ,

d Mθθ�Mffð Þ
dd , evalu-

ated for nominal values of eM0,ed,el, and eff . The Δm includes,
e.g., ΔMrr, andΔ(Mθθ�Mff), and finally d consists of d�,
dd, dl, and dff. Therefore, the covariance matrix of the

double-couple parameters, Cfd̂g, is computed from the co-
variance matrix of the moment tensor solution, C m̂

� �
, by

error propagation:

C d̂
n o

¼ BT C m̂
n oh i�1

B

� �1

: (18)

[46] The correlation matrix is simply computed by re-

scaling all elements of Cfd̂g by ri;j ¼ ci;j=
ffiffiffiffiffiffiffiffiffiffiffi
ci;icj;j

p
, where

ci,j is a component of the i-th row and j-th column of the
matrix. This is a metric we examine using the initial fault
plane solutions from moment tensor estimates for all earth-
quakes in this study.
[47] The (iterative) least square refinement to the initial

solution of eM 0, ed, el, and eff , (available from the eigenvalue
and eigenvector decomposition of the moment tensor matrix,

i.e., from the code bb.m), is found by d̂ ¼ Cfd̂gBT

Cfm̂g
h i�1

m̂ � emð Þwhere em is a moment tensor component

vector computed with the initial double-couple parameters.
This solution takes care of the variable uncertainties and
correlation in the moment tensor estimates from GRACE.
Depending on the correlation structure among four param-
eters computed with equation (18), this solution may need
to be constrained. We will elaborate on this procedure for
each of the earthquakes in Section 6.
[48] We do not attempt to solve for the centroid location

(θs,fs) and depth ds because their dependence on gravity
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data, as expressed in equation (16), is algebraically complex.
However, we test various depths ds, and at each depth, we
solve for the corresponding moment tensor and the best
double couple. We adopt the centroid location (θs,fs) deter-
mined from other seismic CMT or finite fault solutions.

6. Inversion for Moment Tensor and Fault
Parameters

6.1. 2004 Sumatra-Andaman Earthquake

[49] We analyzed the entire time series of monthly global
gravity fields from April 2002 to September 2012 (in terms
of spherical harmonic coefficients) in order to separate, in
the data obtained after the rupture, the gravity signal due
to the earthquake from the background temporal variation in
the gravity potential. We fit the time series using the mean,
annual and semiannual sinusoids, and a Heaviside step
(for coseismic) and a logarithmic function (for postseismic)

simultaneously. The logarithmic term, log 1þ t
150 days

	 

where t is the time elapsed since the rupture, is used to elim-
inate the effect of viscous mantle relaxation on a time scale
significantly longer than that expected from a seismic
source, even allowing for slow coseismic components. The
linear and quadratic components were not included in the re-
gression because they are correlated with the postseismic
trends; however, the coseismic step estimates are not
affected, regardless of whether the linear and quadratic com-
ponents are included or not (by virtue of sufficiently long
time series). In the time series regression, we did not use
the data in 2012 to avoid any potential influence by the
nearby 2012 strike-slip earthquakes.
[50] Figure 7 shows the time series of the GRACE L2 co-

efficients, localized within the domain shown in Figure 6a.
The localized coefficient at degree l is computed with the
neighboring coefficients, and thus creates correlation among
the localized coefficients over degree (but independent over
order), effectively reducing random noise in the original L2
data. For example, the localized coefficient at degree 30 was
influenced by the original GRACE coefficients at degrees 10
to 50, because we used the windowing function expanded
with the maximum degree 20 (Lh = 20). The (localized) coef-
ficients were plotted in the (epicentral) coordinate system
where the z axis locates at the center of the spatial window
function (5.4�N, 93.8�E). It is the location where the largest
moment was released according to the finite fault model
used in Han et al. [2006]. In this rotated coordinate system,
the gravity coefficients at orders 0, 1, and 2 are directly
related to the moment tensor components of the centroid at
the pole (i.e., 5.4�N, 93.8�E in a geographic coordinate
system), as described in equation (6). Almost all coefficients
between degrees 21 and 40 present large perturbations due
to the earthquake in episodic change as well as gradual
change afterwards. Although postseismic observations last
long (>7 years), they need to be carefully examined since
they might be affected by background gravity changes due
to inter-annual climate variability. The longer postseismic
time series reveal that they may be better modeled with a
logarithmic function than the exponential function used in
Han et al. [2008] for the analysis of only 2.5 years of
postseismic data. The coseismic SNR is found highest from
the coefficients of Cl,1, Sl,1, and Sl,2, for Mrθ, Mrf, and Mθf,

respectively, and degrades forCl,2 andCl,0, related to the diag-
onal components of the moment tensor, Mrr and Mθθ�Mff,
respectively.
[51] The coseismic step and its error estimates for each of

the localized coefficients were used for (linear) inversion of
the moment tensor components m̂ and its covariance matrix,

C m̂
n o

. From the condition Mrr+Mθθ +Mff = 0, we found

three diagonal components. The GRACE estimates at depth
of 20 km and GCMT are compared in Figure 8, indicating
that GCMT provides smaller estimates of the components,
particularly Mrf. The corresponding focal mechanism dia-
gram (i.e., “beachball”) was drawn by finding two fault
planes using the program mentioned in Section 5.1. We
use them only as initial solutions for our inversion of the
double-couple parameters reflecting the error characteristics
of the moment tensor estimates from GRACE.
[52] First of all, the correlation matrix as discussed in

Section 5.2 was computed for both fault-plane solutions and
shown in Figure 9. As suspected from the low dip fault plane,
rake and strike are tightly coupled with nearly unity correla-
tion, while the other fault plane solution does not yield such
strong coupling between them. This pair of correlation charac-
teristics is typical for other thrust events considered in this
study (note, however, that the correlation matrix looks differ-
ent for the strike-slip event that will be discussed later).
[53] Due to strong correlation between strike and rake, we

fixed strike ff a priori and solved for M0, d, and l simulta-
neously from the moment tensor and its covariance estimates
following the procedure in Section 5.2. The convergence
was always obtained within not more than three iterations.
The solutions at various strikes for both fault planes are
shown in Figure 10. By changing ff in 1� steps around the
initial strike, we found that double-couple solutions for the
primary fault plane with 320� ≤ff ≤ 360� fit equally well
the GRACE observations. The rake parameter changes line-
arly with strike, while the other parameters of M0 and d are
relatively constant. The trade-off between strike and rake is
only found for the plane with low dip angle. For the conju-
gate fault plane, the secondary double-couple solution can
be delineated with ff = 150� � 5�, M0 ~ 750� 1020Nm,
d ~ 82�, and l ~ 88�.
[54] We tested sensitivity of the fault solutions to depth. In

this case, we fixed the strike at 340� and changed depths
within the lower and upper crust and upper mantle (i.e., from
10 to 30 km). The solutions in the crustal layers yielded var-
iance reduction (VR) = 0.91–0.95, while for solutions in the
upper mantle (not shown), VR= 0.70–0.75 was substantially
lower (Figure 11). Any solution within the crustal layer fit
GRACE observations equally well with the ones in the
lower crustal layer being even better. With increasing
depths, d gradually increases, while M0 decreases and l is
practically unchanged. The solutions at shallower depths,
particularly within the upper crust, show larger changes in
M0 with the variation in d or depth than do the deeper
sources, as expressed by a steeper slope in the ds�M0 or
d�M0 plot in Figure 11. This indicates thatM0 is not robustly
resolved for the upper crustal solutions. As expected, for
shallow thrust earthquakes, M0 sin 2d is better-constrained
[Kanamori and Given, 1981; Tsai et al., 2011]. As depth
increases (i.e., lower crust), however, the effect becomes less
acute, and the resolution of M0 and d improves.
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Figure 7. Monthly time series of the GRACE L2 data after applying the spatial localization over the
Sumatra-Andaman earthquake region (solid blue line) and the seasonal and inter-seasonal fit (solid red
line). Arbitrary offsets were added for clarity. The data residual (black line with error bars) was computed
by subtracting the fit (red line) from the data (blue line). The associated error bar was estimated from the fit
obtained between 2002 and 2011. The data residuals were subsequently analyzed using the Heaviside step
and logarithmic functions for delineation of coseismic and postseismic changes, respectively (solid green
line). The GRACE coefficients were rotated to the epicentral coordinate system where the z axis locates at
5.4�N and 93.8�E and the five lowest order (m= 0, 1, and 2; for both Clm and Slm) coefficients are shown at
different degrees between 21 and 40. From the top to bottom, these coefficients related to the moment
tensor components, Mrr, Mrθ, Mrf, Mθθ�Mff, and Mθf, respectively.
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[55] The single CMT solutions from GRACE at various
depths within the crustal layers show scalar moments vary-
ing from 6.4 to 10� 1022Nm and dip angles varying from
3� to 13�. This is a considerably higher estimate than the
GCMT (4� 1022Nm and a dip of 8�). In terms of amplitude
and spatial pattern of gravity change (Figure 12), the GRACE
solutions at various depths are all consistent, with differences
smaller than 2mGal at the spatial resolution of 500 km. The
primary negative anomaly appears at the back-arc region and
the secondary positive anomaly appears offshore.
[56] As a trial of multiple-source solutions, we introduced

four centroids for the GRACE data analysis. We first deter-
mined the centroid locations corresponding to the major asper-
ities based on a finite fault model [Han et al., 2006]. The fault
parameters (M0, d, and l) of each of the four centroids at a
depth of 20 km were simultaneously estimated with strike
fixed as 340� for all centroids and the dip angle was assumed
to be uniform for the all centroids (that is, total nine indepen-
dent parameters were estimated: four scalar moments, four

rakes, and one dip for four centroids). Expectedly, the new
solution with four sources shows improvement, yielding
VR=0.99. For the case of the multiple CMT solutions from
GRACE, the total moment is 1160� 1020Nm and the dip is
10�, producing a gravity change of similar (or slightly larger)
amplitude as the single centroid solution, but elongated along
strike with the rakes decreasing northward (Figure 13). The
overall distribution of the moments with changing geometry
(combination of strike and rake) in N-S direction is consistent
with the five moment tensor solutions found from long-period
seismic data [Tsai et al., 2005].

6.2. 2007 Bengkulu Earthquake

[57] This earthquake of moment 5� 1021Nm (Mw = 8.4)
[Borrero et al., 2009] is the smallest one that was detected
by GRACE gravity data during the period from 2002 to
2012. The GCMT reports this event as a shallow-dip thrust
rupture, striking ff= 327� at depth of 23.3 km. It released
the largest moment (~40� 1020Nm) in the component of
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Figure 8. (left) The estimates of the moment tensor components of Mrr (Mrr), Mtt (Mθθ), Mpp (Mff),
Mrt (Mrθ), Mrp (Mrf), and Mtp (Mθf) from GRACE and GCMT. (right) For GRACE, the centroid depth
was 20 km which is the focal mechanism corresponding to two possible fault planes (NP1 and NP2). This
initial fault solution was computed from GRACE estimates of moment tensor without consideration of
variable uncertainties in different tensor components.

Figure 9. The correlation matrices of the fault (double-couple) parameter estimates for the two fault planes.
Note nearly unity correlation between strike and rake for the fault plane (NP1) with a low dip angle.
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Mrθ. The 10 years of GRACE gravity time series localized
over the region (Figure 6b) identified a statistically signifi-
cant change in Cl,1 coefficients, before and after the earth-
quake epoch as shown in Figure 14. Such coseismic jump
in the coefficients estimates the Mrθ moment release of
4.8� 0.3� 1021Nm at a depth of 24 km, favorably compar-
ing with the GCMT moment estimate. The second largest
moment release (~2.5� 1021Nm) is expected from the

Mrf component; however, noisier Sl,1 coefficients of the
GRACE gravity data make it difficult to identify this subtle
change. GRACE satellites measure the gravity change in
the N-S direction (controlled by Mrθ) much better than in
the E-W direction (controlled by Mrf) due to their better
sampling of along track orbit perturbation [Han et al., 2005].
[58] The 2005 Nias earthquake ruptured 3months after the

2004 Sumatra-Andaman earthquake and had a moment
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Figure 10. The fault plane solutions determined from the moment tensor and its error covariance esti-
mates for both planes with various strikes. The depth was fixed as 20 km for all cases. In each case, the
strike was fixed a priori andM0, d, and l were estimated simultaneously. The solutions with strike ranging
between 320� and 360� are acceptable with VR ≥ 0.94 for the primary fault plane and the ones with strike
from 145� to 155� are acceptable for the secondary fault plane. Note that l is linearly dependent of the
strike while M0 and d are relatively consistent for the primary fault plane, as also predicted from the cor-
relation matrix (Figure 9).
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Figure 11. The fault plane solution at various depths within the crustal layers. The strike was fixed at
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magnitude twice as large as the 2007 event (110� 1020Nm).
However, this event was difficult to separate in the monthly
GRACE data after the large coseismic and postseismic gravity
change of the 2004 Sumatra-Andaman earthquake.

6.3. 2010 Maule (Chile) Earthquake

[59] A localization of the GRACE L2 time series in the
Chilean region (Figure 6c) reveals coseismic and (possibly)
postseismic gravity changes in association with the 2010
Maule earthquake (Figure 15). It effectively diminishes
other signals and highlights the gravity variations confined
to the specific region, including seasonal and inter-annual
trends. This seasonal and inter-annual gravity change was
removed as in the previous case. The residuals were then an-
alyzed with the coseismic step and postseismic logarithmic
functions. Likewise, the estimates of the coseismic step
and its error from the localized coefficients within the degree
band (l= 21� 40) were used for the moment tensor and fault
parameter inversion.
[60] The estimated moment tensor components from

GRACE are compared with other seismic solutions in
Figure 16. For this earthquake, the moment release in Mrf
(or Sl,1 coefficients) is much larger than Mrθ (or Cl,1 coeffi-
cients), indicating an overall strike along N-S. Compared
to seismic solutions, GRACE overestimates Mrr and Mθθ.
The fault plane solutions and focal mechanisms are depicted

on Figure 16, using the moment tensor estimates at a depth
of 20 km. As in the previous case, these initial double-couple
(fault) solutions were derived without considering variable
uncertainties in the moment estimates. We also found that
the correlation matrix for the low-dip fault plane (primary
one) shows a tight coupling between strike and rake while
the conjugate plane with larger dip does not, just like for
the 2004 Sumatra-Andaman earthquake.
[61] Our final double-couple solutions considering the error

covariance of the moment tensor estimates were determined
by nonlinear inversion starting with the initial solutions.
Figure 17 shows various solutions for two fault planes at depth
of 20 km with variable strikes that are fixed a priori prior
to each inversion. If we delineate the solutions yielding
VR≥ 0.88, M0 varies between 215 and 222� 1020Nm
(deceasing with strike), d varies between 17� and 20� (increas-
ing with strike), and rake changes linearly between 80� and
115� (increasing with strike), when ff changes from 5� to
35�. The conjugate fault solution can be described with
M0 = 220� 7� 1020Nm, d =72� � 2�, l =85� � 3�, when
ff=185� � 7�.
[62] The GRACE solutions at depths in the upper mantle

(25–30 km) indicate poor agreement with the GRACE
observations, yielding only VR< 40%; on the other hand,
the inversions in the upper and lower crust (10–24 km) yield
VR~ 90%. The GRACE solutions obtained within the
crustal layers are presented in Figure 18. As in the previous
case, M0 and d change significantly with depth while l is
more or less constant. The depths of the Maule earthquake
seismic solutions range from 24 to 35 km. The crustal
thickness from CRUST 2.0 [Bassin et al., 2000] over the
Maule area is 32 km, thicker than the PREM model we

(a) (b)

(d)(c)

Figure 12. (a) Surface gravity changes computed from the
GRACE solution for the 2004 Sumatra-Andaman earth-
quake, at a spatial resolution of 500 km (or spherical har-
monic degree up to 40). The particular solution with the
centroid depth of 20 km was used. (b–d) Difference in sur-
face gravity between the solution at 20 km depth and the
ones at 10, 15, and 24 km, respectively. The estimates of
scalar moment, strike, dip, and rake for each solution are
presented at the bottom of each panel. The location of the
centroid is 5.4�N and 93.8�E.

Figure 13. Same as Figure 12a for the 2004 Sumatra-
Andaman earthquake multiple centroid solutions at a depth
of 20 km. Total gravity change from four centroid moment
tensors estimated from GRACE. The strike was fixed at
340� for all centroids and the dip is assumed to be the same
for all centroids. The individual location of the centroids
(shown as red star) were determined by approximating the
finite fault model used in Han et al. [2006]. They are (3.4�N,
94.9�E), (5.4�N, 93.8�E), (8.4�N, 92.7�E), and (11.8�N,
92.5�E). Note that the overall distribution of the scalar
moment and rake (or strike) northward is consistent with the
long-period seismic solutions found in Tsai et al. [2005].
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used. Therefore, the GRACE solutions at the lower bound
of the lower crust would be preferable. This particular

solution is also consistent with most of other solutions in
terms of the dip angle and moment [Lay et al., 2010;

Figure 14. Same as Figure 7 for the 2007 Bengkulu earthquake. Note that the Cl,1 coefficients present a
significant step before and after the epoch of the event in 2007. This particular earthquake was strongest in
the component of Mrθ.
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G Shao et al., Preliminary Slip Model of the Feb 27, 2010
Mw 8.9Maule, Chile Earthquake, 2010, http://www.geol.ucsb.
edu/faculty/ji/big_earthquakes/2010/02/27/chile_2_27.html;

G. P. Hayes 2010, Finite Fault Model, Updated Result of
the Feb 27, 2010 Mw 8.8 Maule, Chile Earthquake,
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/

Figure 15. Same as Figure 7 for the 2010 Maule (Chile) earthquake. The GRACE coefficients were ro-
tated in the coordinate system where the z axis locates at 35.6�S and 286.9�E.
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us2010tfan/finite_fault.php]. Also, the GRACE solutions
show M0 consistently larger than for other long-period
point-source CMT solutions, agreeing better with the finite
fault models. The GRACE solutions within the upper crust
fit the observations equally well; however, the estimate ofM0

sin 2d is smaller than that of the solutions within the lower
crust presumably due to the influence of a lower rigidity.
The GRACE solutions within the upper crust layer, although
presented with large variations inM0, are more robust in terms
of M0 sin 2d.
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Figure 16. Same as Figure 8 for the 2010 Maule (Chile) earthquake.
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Figure 17. Same as Figure 10 for the 2010 Maule (Chile) earthquake. The depth was fixed as 20 km for
all cases. The solutions with strike ranging from 5 to 35� are acceptable, with VR ≥ 0.88 for the primary
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[63] The gravity change was computed using the GRACE
CMT solution at a depth of 24 km (Figure 19). It shows,
likewise, the primary, negative, anomaly on land (back-arc
region) and secondary, positive, anomaly offshore. The
differences in terms of gravity (at 500 km resolution) among
the solutions at depths of 10, 15, and 20 km are less than
1 mGal, while the dip angle estimates vary from 6 to 24º
and the moment estimates from 207 to 276� 1020Nm,
depending on depth.
[64] For this event, we note that the lateral surface density

heterogeneity due to the South American continent (being
different from the uniform ocean layer used in our calcula-
tion) might be important. We made some ad hoc computa-
tions to roughly quantify the effect of land by combining
the ocean anomaly computed with the uniform ocean layer
and the land anomaly computed without the ocean layer.
The eigenfunctions were computed using two different 1D
Earth models with and without the ocean layer. We found

the lateral heterogeneity may cause a difference in the
negative gravity on land by 2 mGal at maximum. We defer
more reasonable assessment of the surface heterogeneity
in gravity to the computation of eigenfunctions with a 3D
Earth model and sea level equation such as in Broerse
et al. [2011].

6.4. 2011 Tohoku-Oki (Japan) Earthquake

[65] Figure 20 presents the time series of the same
GRACE L2 coefficients, but localized around the area
shown in Figure 6d, at m= 0, 1, and 2 and the regression fits.
After removing the mean, linear, and quadratic polynomials
and annual and semi-annual sinusoids, the residual data are
analyzed for the coseismic and postseismic changes. All five
moment tensor components present significant coseismic
and postseismic signature in the time series. Compared to
the time series around the Maule earthquake, this area is
affected less by systematic variations in gravity.
[66] The coseismic step and its error estimates for each of

the localized coefficients were used for inversion of the
moment tensor components at various depths. The solutions
at 20 km are shown in Figure 21 along with other seismic
solutions. The focal mechanism parameters were obtained
for the primary and conjugate fault planes as also shown in
Figure 21. All moment tensor components from GRACE at
20 km are in good agreement with seismic solutions. Once
again, the fault plane solution with low dip angle yields nearly
unity correlation between rake and strike, while it is not
the case for the other fault plane. Therefore, we fix the
strike a priori to obtain the double-couple solutions, and
then test various strikes (Figure 22). Solutions featuring
M0 = 450–470� 1020Nm (increasing with strike), d =14�–5�
(decreasing with strike), l changing linearly from 65� to 90�
(increasing with strike), and ff=175�–95� all fit the GRACE
observations equally well, withVR≥ 98%. The conjugate fault
solution can be described with M0 = 450� 20� 1020Nm,
d =77� � 1�, l=95� � 3�, when ff=18� � 3�.
[67] The solutions with the centroid in the upper mantle

(depth greater than 24 km in PREM) indicated consistently
poorer agreement with the GRACE observations, yielding
VR� 50%, compared to the ones within the upper and lower
crust with VR> 90%. Therefore, we ruled out the solutions
within the upper mantle and only show in Figure 23 the
other solutions located within the crustal layers. The upper
crustal solutions show dip angles of 7� and less and scalar
moments of 380–600� 1020Nm. The solutions within the
lower crust indicate a dip ranging from 9� to 19� and M0
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Figure 18. Same as Figure 11 for the 2010Maule (Chile) earthquake. The strike was fixed at 19� for all cases.

Figure 19. Same as Figure 12 for the 2010 Maule (Chile)
earthquake. The location of the centroid is 35.6�S and
286.9�E.
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ranging 410 to 620� 1020Nm, depending on the precise
depth. In both cases, the shallower the depth in each layer,
the smaller the dip and the larger the moment. When com-
pared with other seismic and GPS-based solutions including
long-period CMT and the moment-weighted CMT from var-
ious finite fault models [Shao et al., 2011; Simons et al.,
2011; Hayes, 2011; Ammon et al., 2011], only the GRACE
solutions within the lower crust are consistent with those

alternative solutions in moment and dip, as well as depth
(except for the USGS CMT in depth).
[68] The coseismic gravity change (at a spatial resolution

of 500 km), computed from the GRACE solution for a depth
of 20 km, is shown in Figure 24a. It locates the primary neg-
ative anomaly in the back-arc region and the secondary pos-
itive anomaly (with one third the amplitude of the primary
anomaly) near the trench. The alternative GRACE solutions

2002 2004 2006 2008 2010 2012

−0.05

0

0.05

0.1

[µ
G

al
]

C
lm

, l=23, m=0

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

[µ
G

al
]

C
lm

, l=23, m=1

2002 2004 2006 2008 2010 2012
−0.2

−0.1

0

0.1

0.2

[µ
G

al
]

S
lm

, l=23, m=1

2002 2004 2006 2008 2010 2012
−0.1

−0.05

0

0.05

0.1

0.15

0.2

[µ
G

al
]

C
lm

, l=23, m=2

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

[µ
G

al
]

S
lm

, l=23, m=2

2002 2004 2006 2008 2010 2012

−0.05

0

0.05

0.1

C
lm

, l=30, m=0

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

C
lm

, l=30, m=1

2002 2004 2006 2008 2010 2012
−0.2

−0.1

0

0.1

0.2

S
lm

, l=30, m=1

2002 2004 2006 2008 2010 2012
−0.1

−0.05

0

0.05

0.1

0.15

0.2

C
lm

, l=30, m=2

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

S
lm

, l=30, m=2

2002 2004 2006 2008 2010 2012

−0.05

0

0.05

0.1

C
lm

, l=37, m=0

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

C
lm

, l=37, m=1

2002 2004 2006 2008 2010 2012
−0.2

−0.1

0

0.1

0.2

S
lm

, l=37, m=1

2002 2004 2006 2008 2010 2012
−0.1

−0.05

0

0.05

0.1

0.15

0.2

C
lm

, l=37, m=2

2002 2004 2006 2008 2010 2012
−0.05

0

0.05

0.1

S
lm

, l=37, m=2

Figure 20. Same as Figure 7 for the 2011 Tohoku-Oki (Japan) earthquake. The GRACE coefficients
were rotated in the coordinate system where the z axis locates at 38.5�N and 142.6�E. Higher noise in
2002 is due to the use of RL04 GRACE products. The quality of the product is improved with RL05 as
shown in the rest of the years.
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Figure 21. Same as Figure 8 for the 2011 Tohoku-Oki (Japan) earthquake.
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Figure 22. Same as Figure 10 for the 2011 Tohoku-Oki (Japan) earthquake. The depth was fixed at
20 km for all cases. The solutions with strike ranging from 175� to 195� are acceptable with VR≥ 0.98 for
the primary fault plane and the ones with strike from 15� to 23� are acceptable for the secondary fault plane.
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Figure 23. Same as Figure 11 for the 2011 Tohoku-Oki (Japan) earthquake. The strike was fixed at 190�
for all cases.
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at 10 (middle of the upper crust), 15 (upper bound of the
lower crust), and 24 km (lower bound of the lower crust)
are represented on Figures 24b–24d as deviations from the
field of Figure 24a. They all remain within 1–2 mGal of the
solution at 20 km.

6.5. 2012 Indian Ocean Strike-Slip Earthquake

[69] We examined the same GRACE coefficients for the
same period but localized around the area where a sequence
of great earthquakes ruptured in the Indian Ocean off
Northern Sumatra on 11 April 2012 (Figure 6e). Figure 25
shows the time series from 2006 to September 2012. It
was found that the long-term trend particularly evident in
the dipolar coefficients, Cl,1 and Sl,1, is primarily due to the
on-going viscoelastic deformation after the 2004 Sumatra-
Andaman earthquake (e.g., numerical modeling such as in
Han et al. [2008]). Unlike the previous earthquakes, the di-
polar coefficients (for Mrθ and Mrf) do not show any signif-
icant coseismic change, while the quadratic coefficients such
as Mθf and (Mθθ�Mff) present a significant coseismic sig-
nature, albeit the latter component being noisier.
[70] The GRACE moment tensor estimates at depth 30 km

were presented with other seismic solutions of the Mw = 8.6
main rupture on 11 April in Figure 26. It is clear that the
GRACE estimates, indicating a composite of the ruptures,
are substantially larger than seismic CMT solutions. The
Mθf estimate indicates a moment twice as large as derived
from conventional seismic solutions. The initial focal mech-
anism is also computed and shown in Figure 26. The corre-
lation matrix for the double-couple parameters does not
show any strong coupling, for either fault plane, as shown

in Figure 27. This is due to the large dip angle of both fault
planes.
[71] Therefore, we inverted four double-couple parameters

simultaneously from the moment tensor and its covariance
estimates. Figure 28 shows these solutions for the primary
and secondary fault planes at various depths from 10 to
50 km. All of them fit the GRACE data equally well, with
VR≥0.95. For the primary fault plane,M0=165–210� 1020Nm
(decreasing with depth), d =78�–88� (increasing with depth),
l =183�–190� (decreasing with depth), and ff is more or less
constant at 111�–113�, as depth changes from 10 to 50 km.
For the secondary fault plane, within the same depth range,
M0 and d are similar as for the first fault plane, while l varies
from �2� to �14� (decreasing with depth) and ff is more or
less constant at 19�–22�.
[72] These double-couple solutions are relatively consis-

tent regardless of depth, which is distinctly different from
the previous thrust events. It can be explained as follows:
The gravity change due to a strike-slip earthquake is charac-
terized mostly by the quadratic gravity coefficients such as
Cl,2 and Sl,2. Those coefficients are excited through the func-
tion K2 in Kanamori and Cipar [1974]. As we extensively
examined in Section 3, this function is nearly independent
of depth at the range we considered in this study. These
GRACE solutions are consistent with, or slightly larger
than, the cumulative moment release during the first 2 h after
the main rupture (139� 1020Nm [Yue, et al., 2012]) com-
bined with that of the aftershock (40� 1020Nm [Duputel
et al., 2012]).
[73] The coseismic gravity change (at a spatial resolution

of 500 km) computed from the GRACE solution at a depth
of 30 km (WNW-ESE plane) is shown in Figure 29a. It
locates the primary quadrupolar anomaly at the epicenter.
Although the free-air anomaly (surface and interior deforma-
tion) is shown in the figure, the Bouguer gravity anomaly
(interior deformation) is very similar since the surface verti-
cal deformation is small, as can be expected from Figure 3c.
It indicates that the gravity anomaly from this earthquake is
mostly from the interior process of compression (yielding
positive gravity) and dilatation (yielding negative gravity).
The alternative GRACE solutions at 30 km (a conjugate
NNE-SSW plane), 10 km (WNW-ESE plane), and 50 km
(WNW-ESE plane) are shown on Figures 29b–29d as devi-
ations from the field of Figure 29a, respectively. The differ-
ences among them remain less than 1 mGal, meaning that all
these double-couple solutions explain the GRACE gravity
change equally well.

7. Summary and Discussion

[74] By analogy with the representation of seismic waves
using normal mode summation, we obtained an analytic form
for the coseismic gravitational potential changes induced by a
point-source double-couple on the basis of the gravitational
potential component of the elastogravitational normal mode
eigenfunctions. A double-couple source excites isotropic,
dipolar, and quadrupolar patterns of gravitational change that
are expressed in terms of spherical harmonics (centered at
the epicenter) in orders 0, 1, and 2, respectively. Each spheri-
cal harmonic coefficient is related to the moment tensor
components ofMrr,Mrθ,Mrf,Mθθ�Mff, andMθf, in a sim-
ple linear manner.

Figure 24. Same as Figure 12 for the 2011 Tohoku-Oki
(Japan) earthquake. The location of the centroid is 38.5�N
and 142.6�E.
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[75] Theoretical computations of the gravitational poten-
tial Green’s functions Fm(ds) for shallow sources within lay-
ered Earth models yield the following results:
[76] 1. The fault depth (related to rigidity and bulk modu-

lus) is critical to characterizing the spatial pattern and ampli-
tude of the coseismic gravity perturbation, mostly through
the isotropic component. For example, isotropic gravity re-
sponses from sources within the crustal layers and the upper

mantle layer can be opposite in sign. In contrast, the
quadrupolar (“strike-slip”) function is independent of depth.
[77] 2. The interior deformation (density change) is more

sensitive to the source depth and is larger than the surface
deformation (Bouguer effect) for the shallower sources
(ds< 20 km).
[78] 3. For shallow thrust sources located in the upper

crust, large-scale gravity data constrain only M0 sin 2d.
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Figure 25. Same as Figure 7 for the 2012 Indian Ocean earthquake. The GRACE coefficients were
rotated in the coordinate system where the z axis locates at 3.8�N and 101.0�E. The time series was drawn
to start from 2006 to highlight 4months of the GRACE observations after the rupture.
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[79] 4. For low-dip thrust events, strike and rake are
tightly coupled in a manner such that only their difference
is constrained.
[80] All of these indicate that there might be trade-offs

among the source parameters: scalar moment and dip with
fault depth and strike and rake when dip is small.
[81] We developed an inversion method to estimate the

fault parameters from global gravitational potential observa-
tions expressed as spherical harmonic coefficients, and
applied it to the 2004 Sumatra-Andaman, 2010Maule (Chile),
2011 Tohoku-Oki (Japan), and 2012 Indian Ocean earth-
quakes. A significant change in certain gravity coefficients
related to Mrθ was also observed after the 2007 Bengkulu
earthquake. For the thrust events, we found that centroid
solutions within the upper and lower crust (ds< 25 km) give
considerably better fits to the GRACE data than the deeper
ones do located within the upper mantle (ds> 25 km). We
interpret this result as due to an increase in bulk modulus
(incompressibility) with depth responsible for the discordance
in the resulting synthetics, as also found by Cambiotti et al.
[2011]. In addition, crustal solutions (both upper and lower)
yield more robust values of the parameterm�1

s M0 sin2d, where
ms is the source rigidity, and thus of Δu sin 2d (where Δu is the
seismic slip). Note that the latter is directly representative of

the vertical component of slip in the limit angles d for which
cos d is stationary. Other seismic and geodetic solutions are
consistent with the GRACE solutions within the lower crust.
For the strike-slip events in 2012, the double-couple solutions
present no significant depth-dependency and no trade-off
among the fault parameters.
[82] In terms of spatial patterns of coseismic gravity

changes, the GRACE observations consistently found pri-
mary negative gravity anomalies in the back-arc region and
smaller positive anomalies offshore, for the three thrust
events in 2004, 2010, and 2011. The negative anomaly orig-
inates mostly from the isotropic term expressing the influ-
ence of dilatation through the excitation function K0 of
Kanamori and Cipar [1974]. The deeper sources, located
within the upper mantle with larger bulk and rigidity moduli
than in the crust, cannot reproduce the larger negative grav-
ity changes. In this respect, the satellite gravity observations
from the megathrust events can be interpreted as expressing
large-scale interior deformation associated with density
changes (dilatation) inside the crustal layers. From the
strike-slip event in 2012, the gravity change is, again, mostly
from the interior process since the gravity effect from the
vertical deformation at the crust-ocean interface is an order
of magnitude smaller. The quadrupolar gravity pattern,
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Figure 26. Same as Figure 8 for the 2012 Indian Ocean earthquake. Note that GRACE indicates a
cumulative moment release from all events while various CMT solutions involve only the major event.

Figure 27. Same as Figure 9 for the 2012 Indian Ocean earthquake. Unlike the previous thrust events
characterized by a shallow-dipping fault plane, there is no tight coupling among the double-couple param-
eters for both fault planes.
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being positive in ENE and WSW quadrants and negative in
NNW and SSE quadrants, indicates compression and dilata-
tion, respectively, radially inside the Earth.
[83] Our work also offers the possibility of investigating

the presence of any ultraslow components in the spectrum
of the seismic source. The largest ever earthquake recorded,
the 1960 Chilean event was documented by Kanamori and
Cipar [1974], Kanamori and Anderson [1975] and Cifuentes
and Silver [1989] to include a slow precursor, which started
15min before the high-frequency rupture, and may have had a
comparable moment. Similarly, a number of studies of the
2004 Sumatra earthquake (including the modeling of its nor-
mal modes) have shown that its very-long period moment,
1.15� 1023Nm, was more than 2.5 times greater than that
derived from the standard GCMT algorithm, indicating an
element of slowness also expressed in other characteristics of
its source [Stein and Okal, 2005; Tsai et al., 2005; Choy and
Boatwright, 2007]. Preliminary evidence also suggests that
the 1964 Alaska earthquake, and possibly the Rat Island earth-
quake of 1965, may have featured a similar component of
source slowness [Nettles et al., 2005]. By contrast, the normal
modes of the 2010 Chilean and 2011 Tohoku events do not
reveal any such slowness [Okal et al., 2012; Okal, 2012].
[84] Because the inversion of GRACE L2 data uses

successive orbits for a month, the seismic moments resolved
in the present study represent averages over a time window
much longer than accessible from seismic data. The latter

are limited in principle by the period of the Earth’s gravest
mode, 0S2 (3232 s), and in practice most classical CMT in-
versions are carried at periods not exceeding 300 s. Conse-
quently, the comparison between our results and classical
seismological ones can shed some light on the behavior of
the source on time scales transgressing the seismic spectrum:
a significant disparity between a GRACE moment and a
(seismic) CMT solution would be a proxy for the existence
of a slow source component releasing moment at frequencies
below that of 0S2, while obviously it could not resolve the
details of such a component (e.g., whether it was precursory,
coseismic or took place 10 days after the main shock).
[85] 1. For the 2004 Sumatra-Andaman earthquake, the

composite GRACE solution consisting of four sources elon-
gated along strike yields a composite moment of 1.2� 1023

Nm with a dip of 10�, in excellent agreement with the value
of 1.2� 1023Nm obtained at ultralong seismic periods by
Tsai et al. [2005] and Okal and Stein [2009], and about
2.5 to 3 times greater than the classical GCMT solution.
We conclude that GRACE confirms the slow components
occasionally documented at frequencies lower than those
of CMT inversions, but fails to unearth even slower ones,
with characteristic times of hours to days, whose existence
could not have been a priori excluded.
[86] 2. For the 2010 Maule, Chile earthquake, our solu-

tions range from 2.0 to 2.7� 1022Nm for dips between
12� and 24�, and centroid depths between 15 and 24 km.
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Figure 28. Same as Figure 11 for the 2012 Indian Ocean earthquake. In this earthquake, the simulta-
neous solutions of the double-couple parameters were obtained at various depths for both fault planes
(due to no tight coupling among the parameters). All the solutions produce VR ≥ 0.95. A distinct differ-
ence from the previous thrust events is that the double-couple solutions of this strike-slip earthquake
are relatively consistent regardless of depths. The scalar moment estimate from GRACE is consistent with
the cumulative moment release from a series of the main ruptures and aftershocks.
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These numbers compare favorably with finite fault models
such as Lay et al.’s [2010] (M0= 2.1� 1022Nm), and are
only about 20% greater than the GCMT solution.
[87] 3. In the case of the 2011 Tohoku-Oki earthquake,

scalar moments estimated from GRACE data range from
4.1 to 6.1� 1022Nm, with dips between 9� and 19� and
depths between 15 and 24 km. This is in excellent agreement
with the published GCMT value (5.3� 1022Nm) and sup-
ports Okal’s [2012] conclusion that the earthquake does
not feature anomalous source slowness.
[88] 4. For the 2012 Indian Ocean strike-slip earth-

quakes, GRACE estimates the scalar moment at 1.9 �
1022Nm at a depth of 30 km, 60% larger than the com-
bined GCMT values for the mainshock and aftershock
(0.9� 1022Nm and 0.3� 1022Nm respectively), but com-
paring favorably with the total moment of 1.4� 1022Nm
of the finite fault solution of the main shock sequence by
Yue et al. [2012] combined with the estimate of 0.3� 1022N
m for the aftershock [Duputel et al., 2012].
[89] 5. The detection of the 2007 Bengkulu earthquake

(M0= 50� 1020Nm; Mw= 8.5) may demonstrate the lower
bound for the use of GRACE gravity data to resolve earth-
quake deformation. This was feasible due to the highest sen-
sitivity of GRACE data to gravity change in N-S direction,
where the spatial resolution could improve 400–500 km to
as little as 200–300 km.
[90] In this work, we attempted to characterize five great

earthquakes in terms of a centroid (point) representation,
although the laterally and vertically distributed moments or

slips with a finite dimension of fault would be more suitable
for such large earthquakes. Our quantification of the centroid
sources from gravity observations compares, in general, fa-
vorably with other seismic centroid solutions. When jointly
analyzed with other terrestrial data (like GPS and seismic re-
cords), GRACE gravity data will provide seldom-observed,
broad-scale constraints on the spatial distribution of slip.
[91] The gradual postseismic changes over a time frame

of several years observed in most cases should not be
overlooked. Continuous observations of gravitational poten-
tial changes will be useful to document the rheological
response of the Earth to great earthquakes and to advance
our understanding of post-earthquake stress and strain redis-
tribution. These data could provide, for example, an insight
into bulk behavior: time-dependent (inelastic) bulk modulus
[Rundle, 1978; Rundle and Smith, 1982] versus no signifi-
cant bulk relaxation [Cohen, 1980a, 1980b; Ivins and
Sammis, 1996; Pollitz, 1997]. These could be indispensable
for understanding the large-scale behavior of the Earth’s
shallow material, and eventually for earthquake hazard
assessment and mitigation applications. Finally, the future
GRACE follow-on mission equipped with enhanced instru-
mentation [Watkins, 2011] may allow us to exploit gravita-
tional potential data in the analysis of smaller, and thus more
frequent seismic events than the ones studied here. The tran-
sient gravitational perturbations available from L1B orbit
perturbation data could deliver additional understanding at
the seismic frequencies.

Appendix A: On the Behavior of Isotropic Gravity
Response From Shallow Sources

[92] In order to investigate the isotropic gravity response
function F0(ds), we examine the excitation function nK0;l

given in Kanamori and Cipar [1974] using the eigenfunction
components defined by Alterman et al. [1959]. This can be re-
written by introducing the dilatation component as (we specify
here the degree l and overtone n, explicitly):

nK0;l
dsð Þ ¼ 2l þ 1

4pnsl
2 I1 þ l l þ 1ð ÞI2½ � nX l dsð Þ � 3n _y1;l dsð Þ

n o
; (A1)

where nsl is the eigenfrequency; nXl is the dilatation

eigenfunction that can be written as n X l ¼ n _y1;l
þ 2

r n y1;l
� l lþ1ð Þ

r n y3;l
, and n _y1;l

is the radial derivative of n y1;l : n _y1;l ¼
�2�l

�l þ 2mð Þr n y1;l þ
1

�l þ 2mð Þ n y2;l þ
�ll l þ 1ð Þ
�l þ 2mð Þr n y3;l with the Lamé

constants �l and m (we use the notation �l to distinguish it from
the rake angle l); y3 is the horizontal displacement compo-
nent of the eigenfunction; I1 and I2 are energy integrals defined
in Kanamori and Cipar [1974]. These functions need to be
evaluated at the source depth ds to compute the change in grav-
itational potential at the surface. The traction component of the
eigenfunction, y2, must vanish at the surface and remains small
at shallow depths. We can thus approximate n y2;l

¼ �ln X l

þ2mn _y1;l
� 0, and obtain n _y1;l � � �l

2m n X l . In turn, the follow-
ing approximation will hold for shallow sources:

n K0;l
dsð Þ � 2l þ 1ð Þ

4pnsl
2 I1 þ l l þ 1ð ÞI2½ �

3�lþ 2m
2m

� �
n X l dsð Þ: (A2)

Figure 29. Same as Figure 12 for the 2012 Indian Ocean
earthquake. The location of the centroid is 3.8�N and
101.0�E. Figure 29 a stands for the WNW-ESE fault plane
while Figure 29b the NNE-SSW plane at the same depth of
30 km. Note that the surface gravity is not significantly differ-
ent even with a wide range of variation in centroid depth.

HAN ET AL.: EARTHQUAKE SOURCE INVERSION FROM GRACE

1265



[93] Alternatively and introducing Poisson’s ratio
n ¼ �l

2 �l þ mð Þ ;

n K0;l
dsð Þ � 2l þ 1ð Þ

4pnsl
2 I1 þ l l þ 1ð ÞI2½ �

1þ n
1� 2n

� �
n X l dsð Þ: (A3)

Note in particular that under this approximation, nK0;l be-
comes proportional to the excitation coefficient nN0;l for an
explosive source [Okal, 1978]:

nK0;l
n � � 3lþ 2m

2m nN0;l ¼ � 1þ n
1� 2n nN0;l: (A4)

[94] In the PREM model, (1 + n)/(1� 2n) varies only from
2.6 to 2.9 within the upper and lower crust and the upper
mantle. As a result, (A4) implies that dilatation in the source
region will directly influence the isotropic gravity response
function F0(ds).
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