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Abstract—In the context of the 2022 volcanic explosion in

Tonga, we investigate the structure of the fundamental elasto-

gravitational branch GR0 of air waves, and especially their cou-

pling to an oceanic column of variable depth. We find that the

structure of the wave in the atmosphere, in particular the over-

pressure component of its eigenfunction, is essentially independent

of the presence and depth of an oceanic layer; normal mode theory

predicts that its excitation by an explosive source in the atmosphere

is also independent of water depth. The impedance of GR0, defined

as the ratio of vertical displacement of the sea surface to over-

pressure at the base of the atmosphere, increases strongly with

water depth and varies only marginally with frequency. It can

become negative for very shallow depths and very low frequencies,

but takes its classical hydrostatic value of 1 cm/mbar only for a

� 5-km deep ocean. This results in minimal maregraphic ampli-

tudes, and hence flooding hazard, during the passage of GR0 over

very shallow seas. Finally, we find that the ratio of the sea surface

displacement to the pressure signal on the seafloor, as measured for

example by sensors of the DART network, increases strongly with

ocean depth, but never reaches its hydrostatic value (1 cm/mbar or

10�4 m/Pa). In this respect, the present DART protocol in which

the hydrostatic ratio is hardwired into the reporting algorithm could

be considered deceptive, and should be revised.

Keywords: Atmospheric Waves, Tsunamis, DART sensors.

1. Introduction

The catastrophic eruption of the Hunga Tonga–

Hunga Ha’apai [hereafter ‘‘Tonga’’] volcano on 15

January 2022 featured a major atmospheric explosion

which generated elasto-gravitational waves in the

atmosphere with a worldwide amplitude of a few hPa

(mbar) (e.g., Gusman et al., 2022), unparalleled since

the 1883 explosion of Krakatau (Harkrider & Press,

1967). The principal wave circled the Earth several

times, at a celerity of � 313 m/s, practically undis-

persed at frequencies lower than 2 mHz, below the

Brunt–Väisälä frequency characterizing the bobbing

of an atmospheric particle displaced isentropically in

a stable atmosphere featuring a sub-adiabatic tem-

perature gradient (e.g., Ben-Menahem & Singh,

1981, p. 799). These properties identify the Tonga air

wave as the fundamental elasto-gravitational branch

GR0 analyzed in detail by Press and Harkrider (1962),

and often called a ‘‘Lamb wave’’, as it falls within the

family of modes originally studied by Lamb (1916).

However, in a previous contribution (Okal, 2024), we

showed that the potential energy of the mode GR0

was actually mostly elastic, and proposed that this

surprising property was directly related to the nature

of the atmosphere as a perfect gas, which mandates

an intrinsic similarity between the speed of sound a
and the celerity of the putative tsunami of a repre-

sentative atmospheric layer under the shallow-water

approximation [SWA]. In short, we concluded that a

perfect gas cannot support a tsunami, defined as an

oscillation between kinetic energy and gravitational

potential energy in a fluid layer.

When the air wave GR0 propagates over an ocean

basin, the boundary conditions at the bottom of the

atmosphere are changed, resulting in the coupling of

its eigenfunction with the liquid ocean, and in par-

ticular in a deformation of the oceanic surface which

can be recorded by maregraphs. Such worldwide sea

level fluctations were observed after the 1883 Kra-

katau event (Wharton, 1888), first interpreted as a

phenomenon ancillary to an air wave by Ewing and

Press (1955), and finally modeled theoretically by

Harkrider and Press (1967). Because of the possibility

of a maregraphic recording, this situation has
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occasionally been described as ‘‘a tsunami jumping a

continental mass’’, which is of course wrong since the

worldwide propagation, over both continents and

oceans, is in the form of an air wave traveling at

� 313 m/s, and as we will show, the structure of the

oscillation inside an oceanic basin is fundamentally

different from that of a bona fide tsunami.

The purpose of this paper is to investigate several

aspects of the coupling between the GR0 air wave and

an oceanic column. Section 2 describes the compu-

tational strategy and the atmospheric model used.

Section 3 examines the effect of an oceanic layer of

variable depth on the structure of the eigenfunction in

the atmosphere, which we find to be minimal. Sec-

tion 4 examines the impedance Z at the ocean surface,

i.e., the ratio of the vertical displacement g of the

ocean surface, as measured by a maregraph, to the

overpressure at the bottom of the atmosphere. Finally,

Sect. 5 similarly examines the ratio D between g and

the overpressure at the bottom of the ocean, which is

the physical parameter measured for example by

sensors of the DART network (Bernard et al., 2006).

We find that both Z and D depend strongly on the

depth of the oceanic column, even though both have

often been assumed to take the hydrostatic value

1=ðqwgÞ � 1 cm/mbar (0.1 m/kPa). These results

have far-reaching consequences in terms of both the

level of hazard from ocean-coupled air waves in the

far field, and the scientific interpretation of DART

sensor recordings.

2. Computational Strategy

In this study, we use the atmospheric model of the

‘‘Air Research and Development Command’’

[ARDC] (Minzner et al., 1959; Wares et al., 1960),

which we truncate at an altitude of 130 km, where the

particle density has already decreased by 8 orders of

magnitude relative to its value at the bottom of the

atmosphere (1.224 kg=m3
). The atmospheric struc-

ture is complemented by a solid Earth model inspired

from PREM (Dziewonski & Anderson, 1981),

extended down to a depth of 1000 km.

Figure 1a plots the particle density q of an ocean-

less model using a logarithmic scale along the ordi-

nate axis. In order to improve the resolution of the

figure, we follow Okal (2024) in using linear but

variable scales in abscissæ for altitude or depth,

inside the solid Earth, in the first 10 km of atmo-

sphere, and in the upper part of the structure.

We also consider models with oceanic layers of

variable depths, ranging from 100 m to 6 km. Fig-

ure 1b shows a representative model with a depth of

5 km. As a simplifying assumption, the oceans are

not stratified, but rather given a constant density,

qw ¼ 1030 kg=m3
.

Our computational strategy considers the problem

of a wave propagating in a single ‘‘SLG’’ stratified

medium, whose layers can be solid (‘‘S’’, the solid

Earth), liquid (‘‘L’’, the ocean, if present) or gaseous

(‘‘G’’, the atmosphere). In each layer, the equations of

mechanics involve both elastic and gravitational

restoring forces. This is in contrast to the more tra-

ditional approach consisting of solving separately,

e.g., the deformation of an elastic Earth bounded by a

free surface, the tsunami of an oceanic column with a

totally rigid bottom, or the air wave of an atmosphere

also bounded by a rigid Earth surface, and of later

attempting to work out the coupling of the resulting

oscillations, hosted by physical media intrinsically

incompatible with each other.

This unifying approach was originally introduced

by Harkrider (1964) using a Haskell–Thomson

propagator in a flat-layered system (Haskell, 1953).

Then in a landmark paper, Ward (1980) showed that a

tsunami represents a particular case of the Earth’s

spheroidal modes, whose eigenfunction penetrates

(albeit weakly, of course) the solid Earth; later, the

same approach was extended to the other boundary of

the ocean—the atmosphere, notably by Lognonné

et al. (1998), and we will use this general algorithm in

the present paper. The eigenfunction is computed

routinely as a 6-dimensional vector (4-dimensional in

fluid layers) using Kanamori and Cipar’s (1974)

formalism, itself derived from earlier works (e.g.,

Saito, 1967).

Following these authors, boundary conditions

feature an absence of deformation (zero displace-

ments y1 and y3 and no change in potential y5) at the

bottom of the structure (typically taken as � 700 km

into the solid Earth). At the top of the atmosphere

(taken here at an altitude of 130 km), we impose zero

overpressure and continuity of the potential
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component y5 with its value predicted in the absence

of mass from Laplace’s equation for the relevant

value of the orbital degree l (Saito, 1967).

We emphasize that this algorithm includes the

elastic and gravitational components of the restoring

force in any medium; in particular when applied to

the case of a classic tsunami wave in an oceanic

Fig. 1
Particle density q as a function of altitude (or depth below the atmosphere), scaled to its value at the bottom of the atmosphere (1.224 kg=m3,

and plotted on a logarithmic scale. a Model ARDC without an ocean. The horizontal scale is linear, but varies within the solid Earth (left of

the red vertical line), in the first 10 km of the atmosphere (left of the green dashed line), and in the upper atmosphere. Note the fast decay of

qair , which loses 8 orders of magnitude at the top of the model. b Model ARDC with a 5-km deep ocean, left of the blue vertical line. The

conventions are similar to a, with the same horizontal scale in the ocean and in the first 10 km of atmosphere
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column, it automatically takes into account the

effects of the finite elasticity of water, and of gravity

inside the solid substratum, as recently studied, e.g.,

by Watada et al. (2014). A fundamental advantage of

the normal mode formalism is that it resolves seam-

lessly the question of the effect of the fine structure of

the interface between the major layers of the SLG

system, e.g., sedimentary layers between the ocean

and the rigid crust (Lognonné et al., 1998; Okal,

1988; Ward, 1980).

Additionally, the normal mode approach lends

itself to the effortless computation of the excitation of

any type of wave by a point source, derived directly

from the classic paper by Gilbert (1971), with

essentially no change in coding with respect to clas-

sical synthetic seismograms. In all instances, the

theory remains linear and in many cases it was used

successfully to recover quantitative estimates of the

source (i.e., seismic moments) remarkably consistent

with independently published values (e.g., Okal and

Talandier, 1991; Okal, 2007).

Finally, we have verified that results from the

normal mode approach are consistent with those

using Harkrider’s (1964) formalism.

3. The Structure of GR0: Largely Insensitive

to the Oceanic Column

In Fig. 2, we examine the eigenfunction of the

GR0 wave computed around T ¼ 1000 s using the

normal mode formalism with orbital degree l ¼ 127.

Figure 2a shows the vertical displacement, y1 in the

notation of Saito (1967), normalized to its value at

the bottom of the atmosphere, and plotted using a

logarithmic scale. Note that it grows very fast in the

first few km, stabilizes around 3 orders of magnitude

about 10 km height, and then gains another 4 orders

of magnitude at the top of the structure. Such very

large displacements just express the much reduced

particle density qair: very little mass is actually

moved around at those heights. The irregularities in

the plot around 20–35 km are an artifact of y1
changing sign and featuring two nodes, the logarith-

mic plotting scale mandating the use of its absolute

value. Figure 2b similarly plots the component y2,

which in a fluid is the opposite of the overpressure p.

It features a much more regular decay with height

from its value at the bottom of the atmosphere, by

about 6 orders of magnitude to the top of the struc-

ture. In this respect, it constitutes a better descriptor

of the general eigenfunction than y1. Finally, inside

the solid Earth, both components decay regularly

with depth; in this case, y2 becomes the normal stress

component rrr.

In Fig. 3, we target two periods (600 s, Left; and

2000 s, Right), and examine the influence of an

oceanic layer on y2, the opposite of the overpressure,

scaled to a common value of 1 at the bottom of the

atmosphere; it is taken as representative of the

structure of the eigenfunction. The variable y2 is

plotted linearly along the horizontal scale. The ver-

tical scale represents depth below the atmosphere

(positive values) or altitude into it (negative values).

The scale is linear between an altitude of 15 km and a

depth of 10 km. Logarithmic scales are used outside

this window. Various colors are used to represent the

profile of y2 for various ocean depths h, from 0 (no

ocean, black) to 6 km (red). The most remarkable

property is that, at both periods, the profile of y2 in

the atmosphere is totally independent of h; in prac-

tice, the various curves plot on top of each other. In

the presence of an oceanic column, the overpressure

keeps increasing with depth inside the water, but the

coupling remains small and does not affect the

structure of the wave in its main domain, namely the

atmosphere. As shown on Fig. 4, this property is

confirmed by the fact that the phase and group

velocities also remain remarkably constant as a

function of h, as does the energy integral,

[I1 þ lðl þ 1Þ I2] in the notation of Saito (1967),

computed for a common normalization of y2 ¼ 1 at

the base of the atmosphere.

In short, the atmospheric wave remains essentially

insensitive to the presence or absence of an under-

lying medium of finite elasticity; its propagation and

its structure are entirely controlled by the atmosphere,

i.e., by the medium which supports it in the first

place. Its prolongation into the solid Earth and/or a

potential oceanic layer keeps an ancillary character

which does not affect the fundamental structure of the

eigenfunction inside the atmospheric column. A

parallel can be drawn with the case of a classical

oceanic tsunami, whose propagation is unaffected by

1098 E. A. Okal Pure Appl. Geophys.



the presence of the atmosphere, even though its

eigenfunction is indeed prolonged upwards, all the

way to the ionosphere where it can result in signifi-

cant perturbations as detected during major tsunamis

(Artru et al., 2005; Occhipinti et al., 2006); or to the

case of a standard seismic Rayleigh wave, which is

continued into the oceanic column where it can be

detected (Freitag & Okal, 2020; Simon et al., 2021),

but without significant effect on its dispersion

properties.

We now consider the excitation of the air wave by

a dynamic source located in the atmosphere. In the

normal mode framework, and for a fluid layer, the

only possible such source is an explosion, which can

Fig. 2
a Vertical displacement component y1 of the eigenfunction of the branch GR0 around T ¼ 1000 s (l ¼ 127) for the ocean-less structure. The

horizontal scaling is similar to that of Fig. 1a. y1 is normalized to its value at the bottom of the atmosphere, and plotted using a logarithmic

scale. b Same as a for the [opposite of the] overpressure, y2, similarly normalized to its value at the bottom of the atmosphere
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be conceptually characterized by an isotropic

moment M0, through an excitation coefficient N0:

N0 ¼ � 2l þ 1

4px2 ½I1 þ lðl þ 1ÞI2�
� y2 ðrsÞ

Ks
ð1Þ

obtained by setting ls ¼ 0 in Eq. (2) of Okal (1978).

In (1), rs is the radius from the center of the Earth to

the source, and Ks the bulk modulus at the source. As

we have seen, both y2 in the atmosphere and the

energy integral ½I1 þ lðl þ 1Þ I2� are independent of

water depth, so we anticipate that N0 should also be.

This is verified on Fig. 5, where we target the same

three periods as in Fig. 4 (600, 1000 and 2000 s), and

plot the absolute value of N0 in the first 20 km of the

atmosphere (normalized to a common value of 1 for

y2 at the bottom of the atmosphere), for all nine

oceanic models previously considered. We plot each

curve with the same color code as in Fig. 3, from no

ocean (black) to h ¼ 6 km (red). However, it is

immediately apparent that all curves plot essentially

on top of each other, which expresses that the exci-

tation of GR0 by an explosion in the lower

atmosphere is independent of the presence of an

oceanic layer, or of its thickness.

It is possible to draw a parallel between these

properties and those of very long-period seismic

Rayleigh waves, whose eigenfunctions are essentially

unaffected by the presence of an oceanic column, as

long as the depth h of the water layer remains much

smaller than the wavelength K. Note here that, while

the dispersion of mantle Rayleigh waves has long

been known to be sensitive to the presence and depth

of an oceanic layer (e.g., Kausel et al., 1974), this

effect is due to variations in the structure of the crust

and upper mantle (e.g., Yu & Mitchell, 1979), but not

to the mere presence of the water layer. Indeed, we

have verified that at T ¼ 180 s (l ¼ 50;

K � 800 km), the phase velocity of a Rayleigh wave

varies by only 0.2% when the ocean depth is

increased from 1 to 5 km, while keeping a constant

solid Earth structure. Similarly, the various excitation

coefficients at a representative depth of 40 km vary

by at most 1.5%. In both instances (mantle Rayleigh

waves and GR0 air waves), this is an illustration of

the Rayleigh-Ritz variational principle, namely that

the eigenfunction is stationary with respect to a small

variation of structure.

Fig. 3
Overpressure �y2 (scaled to 1 at the bottom of the atmosphere) as a function of depth in the ocean (positive values) or altitude in the

atmosphere (negative values) for a variety of ocean depths, color-coded from 0 (no oceans, black) to 6 km (red). The vertical scale is linear

between a depth of 10 km and an altitude of 15 km, and logarithmic otherwise. Note that all curves plot on top of each other in the

atmosphere, and differ only in the oceanic and solid layers. a Period T ¼ 600 s; b Period T ¼ 1000 s
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Fig. 4
Variation of phase velocity C (Top), group velocity U (Center) and energy integral [I1 þ lðl þ 1Þ I2� (Bottom) as a function of the depth h of

the oceanic column, for three target periods (600 s, dotted line; 1000 s, dashed line; 2000 s, solid line). Individual values are color-coded as in

Fig. 2. Note the remarkable constancy of the velocities with both period and h. While the energy integral expectedly varies with period, it

remains largely independent of h
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Fig. 5
Excitation of the air wave branch GR0 by an explosive source as a function of the altitude of the source, at 3 representatives periods. Plotted is

the absolute value jN0 j defined by (1), scaled to a common value y2 ¼ 1 at the bottom of the atmosphere, using a common linear horizontal

scale for all ocean depths at each of the three periods. Each ocean depth is color-coded as in Fig. 3; however, all curves plot on top of each

other, indicating the independence of N0 on depth
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4. Response of the Ocean to the Air Wave GR0

In this section, we focus on the dynamic response

of an oceanic column to the passage of an air wave,

namely on the value of the vertical motion g of the

surface of the ocean resulting from the overpressure

component p of the GR0 air wave. We characterize it

through the impedance ratio at the base of the

atmosphere,

Z ¼ g
p

¼ � g
y2

ð2Þ

where y2 is the normal stress component of the

eigenfunction in the normal mode formalism. Since

we have shown that y2 is largely insensitive to the

presence (or depth) of an ocean, this ratio will allow

the interpretation of a maregraphic record of the wave

(such as those obtained in the very far field following

the 1883 Krakatau explosion) in terms of the prop-

erties of the air wave in its home medium, the

atmosphere. Harkrider and Press (1967) examined

variations in Z as a function of frequency, but fixed

the ocean thickness at h ¼ 5 km. They found that at

low frequencies, Z approaches its hydrostatic value

ð1=qw g � 10�4 m/Pa = 1 cm/mbar), but could

increase greatly when the celerity of GR0 is reduced

to values close to
ffiffiffiffiffi

gh
p

, characteristic of the propa-

gation of a genuine tsunami. In addition, except in

special cases described in Sect. 5 below, Z is positive,

which is in contrast to the case of a storm surge.

By contrast, we consider here variations in Z both

with period and ocean depth. Figure 6 is a color-

coded contour of Z in the frequency range 0.1–2 mHz

ðT ¼ 500–10,000 s) and for depths h varying from

0.1 to 6 km. Clearly, Z increases strongly and regu-

larly with water depth h, but decreases only

marginally with increasing period T, at least in the

frequency domain selected, i.e., when the celerity of

GR0 remains larger than that of a regular tsunami. For

the typical ocean depth (5 km) used by Harkrider and

Press (1967), that condition would occur only when

the group velocity U drops considerably due to cou-

pling of the branch with acoustic ‘‘S’’ modes (Press &

Harkrider, 1962), in the vicinity of the Brunt–Väisälä

frequency. In much shallower waters, this would

require even slower GR0 celerities, which coupling

with acoustic modes cannot provide. The agreement

reported by Harkrider and Press (1967) between Z in

the limit x ! 0 and the hydrostatic value (1 cm/

mbar) is a pure artifact of their choice of h ¼ 5 km,

which incidentally overestimates the average depth of

the world’s oceans, h � 3:7 km.

An intriguing result of Fig. 6 is the existence of a

small domain where Z takes a negative value (black

shading), namely for very shallow depths

(h � 200 m) and very long periods (in practice

greater than 1600 s). In this regime, an underpressure

(y2 [ 0) will result in a positive surge g. In the

absence of an oceanic layer, an overpressure at the

bottom of the atmosphere will always result in a

subsidence of the substratum, but in its presence and

for sufficiently large h and x, the layer acts to reverse
the impedance and create a positive bulge at the

ocean surface. On the other hand, if the layer is too

thin, it cannot provide this effect, and Z remains

negative. This is obviously scaled to the wavelength

K, hence the dependence on frequency. Indeed, the

boundary of the black domain on Fig. 6 (Z ¼ 0) can

be reasonably approximated by the line kh � 10�3,

where k ¼ 2p=K ¼ x=C, with C ¼ 313 m/s, shown

as the small purple dots on Fig. 6. A tentative

explanation of this property is given in Sect. 6.

It is interesting to note that a similar situation

(Z \ 0) is observed at the eye of a hurricane, where

severe underpressure results in flooding of coastlines

upon landfall (notwithstanding the additional

dynamic surge created by the winds). At a given

coastal location, a hurricane is a relatively long-lived

phenomenon, lasting several hours to a day, and thus

may correspond to the limit x ! 0 of an atmo-

spheric system. In that particular case, a perfect

hydrostatic equilibrium is achieved, with the impe-

dance Z taking the value �1=ðqwgÞ.
Note finally that the broad variations of Z with

period T and primarily with ocean depth h rule out the

concept of a simple hydrostatic response of the sea

level g to the overpressure p carried by the air wave.

The general patterns of Z are illustrated spectac-

ularly on Fig. 7, which presents maregrams and

barograms recorded across the Bering Sea following

the Tonga explosion. The Bering Sea is divided

structurally into a deep Southwestern basin, and an

extremely shallow Northeastern half (h\50 m for the

most part). Figure 7a shows maregrams at the three
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locations Adak, St. Paul (Pribilof Islands), and Nome

(Alaskan mainland). Adak is a relatively small island

(711 km2) surrounded by deep water. The arrival of

the long-period GR0 wave at Adak is poorly recorded

(solid arrow), but later components result in signifi-

cant oscillations reaching 40 cm zero-to-peak. By

contrast, no sea surface oscillations are recorded at

Nome, where the continental shelf extends for several

hundreds of km at depths less than 50 m. Finally, St.

Paul in the Pribilof Islands sits at the edge of the

continental platform and features an intermediate

behavior. We have verified, using available nearby

meteorological stations, that the overpressure of the

air wave remains essentially constant over the entire

area (Fig. 7b).

The origin of such sea-surface oscillations whose

amplitude correlate remarkably with the depth of the

water column, can be sought in the analysis of the air

wave undertones, which Mizutani and Yomogida

(2023) have identified as significant contributors, as

Fig. 6
Color-coded contour of the dynamic response ratio Z (Eq. 3) as a function of frequency and ocean depth. Note a strong dependence on h, but a

minor one on x. At very long periods and very shallow depths, there is a small region of negative response; the small purple dots plot the line

kh ¼ 10�3. See text for discussion
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originally suggested by Harkrider and Press (1967) in

the case of GR2. The name ‘‘Pekeris waves’’ has

recently been proposed for such harmonics of the

branch GR0 (Watanabe et al., 2022). Indeed, for the

particular branch GR2, we have verified a generally

similar behavior, i.e., a strong decrease of the surface

impedance Z with decreasing water depth. For these

modes, and in the low-frequency limit (f\1 mHz), Z

is found to be as high as 15 cm/mbar for h ¼ 6 km,

bFig. 7

a Left: Map of the Bering Sea with the three maregraphic stations

Adak, St. Paul and Nome. Bathymetric contours are at intervals of

500 m down to 3500 m (light blue), and 1000 m deeper (dark

blue); additionally, the 200-m isobath is shown in pink to highlight

the shallow Northern basin. Right: Time series of maregrams at the

three stations following the 2022 Tonga explosion, plotted on the

same scale. b Same as a for barometric time series at four

meteorological stations available in the vicinity of the maregraphic

stations. This time, note the similarity in amplitudes, pointing out

different dynamic responses Z

Fig. 8
Color-coded contour of the ratio D of vertical amplitude at the sea surface to overpressure at the sea bottom, in cm/mbar, as a function of

ocean depth and frequency. The palette is common to Fig. 6, as are the small purple dots, which delineate the same region of negative D
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but falls to 0.1 cm/mbar for h ¼ 1 km. The impe-

dance Z also exhibits a stronger increase with

frequency than for the fundamental GR0, reaching

values of up to 100 cm/mbar for f ¼ 2 mHz and

h ¼ 5 km. The origin of such high values of Z lies in

the coupling of the Pekeris modes with the genuine

tsunami branch (‘‘GW’’ in those authors’ notation),

which is possible only in deep water (h � 5 km;

Adak). Note in particular that for a tsunami under the

SWA in an atmosphere-free ocean, Z would be infi-

nite; in practice in the presence of a realistic

atmosphere, 1/Z takes a small negative value on the

order of -25 Pa/m.

5. The Pressure at the Bottom of the Ocean

and the Response of a DART Sensor

In this section, we examine the response of a

seafloor DART sensor to the passage of a GR0 air

wave. We are motivated by the results of Fig. 3,

which clearly document the effect of ocean depth on

the overpressure at the seafloor. Figure 8 is similar in

concept to Fig. 6, but this time contours the ratio

D ¼ g
pBott: ð3Þ

of the vertical sea surface displacement g to the

overpressure pBott: on the sea floor. D�1 can be

regarded as the response of a DART sensor to a

disturbance of the ocean’s surface. The color palettes

used in Figs. 6 and 8 are identical.

The general behavior of D is similar to that of

Z on Fig. 6, namely it increases weakly with fre-

quency, but strongly with water depth. However, in

the range of parameters considered, D has a maxi-

mum value of 0.58 cm/mbar and never reaches the

‘‘hydrostatic’’ ratio of 1 cm/mbar. In very shallow

waters and at very long periods, D features the same

region of negative values as Z on Fig. 6.

These results would appear to contradict the

classic paradigm that all long ‘‘tsunami’’ waves in

shallow water feature a ratio D equal to the hydro-

static value of � 1 cm/mbar. However, as discussed

above, the prolongation of the air wave into the

oceanic column does not constitute a tsunami wave,

of which it features neither the propagation

characteristics, nor the structure of its eigenfunction;

as a result, the apparent contradiction is moot. This

point will be discussed in more detail in Sect. 6

below, in the context of the operation of DART

sensors. In a more general context, it serves to

emphasize that not all oscillations of an oceanic layer

can be regarded as tsunamis, let alone ones obeying

the SWA, a condition necessary to feature the ‘‘hy-

drostatic’’ ratio D ¼ 1=ðqwgÞ � 1 cm/mbar.

A further interpretation is given on Fig. 9, where

we contour R ¼ Z=D which represents the dimen-

sionless ratio of overpressures at the bottom and top

of the ocean, in other words the gain of the water

column acting as an amplifier of the pressure at the

bottom of the atmosphere. This ratio is always posi-

tive and greater than 1, as hinted from the profiles in

Fig. 3. It goes to 1 when h ! 0, which simply

expresses that a very thin film of water cannot pro-

vide any amplification of the pressure signal. R also

decreases very weakly with increasing frequency, a

behavior opposite that of Z and D.

In view of its weak dependence on frequency, we

regroup on Fig. 10 the dataset of values of D and plot

them for 24 sampled frequencies, as a function of h

only, for depths h� 200 m. As expected, we note that

all curves plot very close to each other. The full

dataset can be regressed linearly as

D ¼ 0:093 h � 0:014 ð4Þ

where h is in km and D in cm/mbar, as shown by the

red dashed line on Fig. 10. Regression slopes at

individual frequencies increase weakly with fre-

quency, from 0.088 (cm/mbar)/km (8.8 GPa�1) at

0.1 mHz to 0.097 (cm/mbar)/km (9.7 GPa�1) at

2 mHz.

6. Discussion and Conclusion

In order to discuss some physical aspects of the

coupling of a GR0 air wave with an oceanic column,

we regroup in Table 1 critical parameters obtained for

a representative selection of combinations of depths h

and periods T. We consider a deep ocean (h ¼ 5 km)

and a shallow one (h ¼ 1 km), and three periods

spanning the frequency range of Figs. 6, 8 and 9. In

addition, we explore the case of a very thin film of
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water (h ¼ 100 m) at very low frequency (0.1 mHz)

which leads to negative values of Z and D.

A legitimate question concerns the possible

influence of the finite elasticity of the substratum

(both liquid and solid) on the structure of the eigen-

function and in particular its dispersion. We are

motivated in this respect by the work of Watada et al.

(2014) who showed that this explained minor delays

in observed group arrival times of tsunami waves

with respect to those computed by standard algo-

rithms, as observed more than 60 years ago

(Nakamura & Watanabe, 1961) and widely confirmed

following the major tsunamis of the early 2000s

(Hébert et al., 2009; Rabinovich et al., 2011). For this

purpose, we also consider a model in which we

artificially increase by a factor of 10 the seismic

velocities in the solid Earth and oceanic layers, while

leaving unchanged the atmospheric ones and the

Fig. 9
Color-coded contour of the ratio R of overpressure at the bottom and surface of the oceanic layer, as a function of ocean depth and frequency.

Note that R is always positive, greater than 1, increases with depth and only marginally with frequency
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densities q in all layers. This has the effect of mul-

tiplying by 100 the elastic moduli of the substratum,

and we will refer to it as ‘‘the stiffer model’’, for

which the relevant parameters are listed in italics in

all boxes of Table 1. A further experiment will con-

sist of changing the water density qw while keeping

all other parameters fixed.

The first two entries of Table 1 (period T and

phase velocity C) confirm that the water depth h has

practically no effect on the dispersion of the air wave,

nor does the rigidity of the substratum. This illus-

trates, once again, that even though it is weakly

coupled to the ocean and the solid Earth, the structure

of the air wave is totally controlled by the

atmosphere.

We then list the three parameters defined above

(Z, D and R ¼ Z=D), which are extracted from the

dataset in Figs. 6, 8 and 9, as discussed above. Note

that in the stiffer model, Z decreases less at very low

frequencies, but otherwise the three parameters

remain comparable in the two models. This illustrates

that they are not controlled by the elastic properties of

the substratum, but rather almost completely by the

depth of the oceanic column.

We similarly list the ratio of the vertical dis-

placements at the top and bottom of the water layer,

as well as the ratio of the vertical displacement to

overpressure at the bottom of the ocean. In the case of

an oceanic tsunami, and under the assumption that it

is prolonged into the solid Earth in the form of the

‘‘pseudo-Rayleigh’’ wave of a homogeneous half-

space, we had shown (Okal, 2003; Eq. 1) that this

ratio is expected to be

W ¼ y1
Bott:

pBott:
¼ � 3

4

1

lk
¼ � 1

Z 0 ð5Þ

where l is the rigidity of the solid, k the wavenumber

and Z 0 is Z in Okal’s (2003) notation; this ratio

characterizes the impedance of the solid. Equation (5)

is valid in the limit when the phase velocity of the

wave is much smaller than the shear velocity of the

solid, and therefore, the concept extends to the air

Fig. 10
Same dataset as in Fig. 8, plotted as a function of depth only between 200 m and 6 km, for each of 24 frequencies sampled in this study. Note

that all traces plot next to each other, highlighting the primary dependence of D on h. The red dashed line is the regression (2)
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wave in the SLG system, where the ratio is typically

of order 1/10. Note finally the minus sign in (5), since

we consider the overpressure p rather than the radial

shear stress y2 used in Okal (2003). In our notation,W

is always negative, which is expected since thermo-

dynamics mandate that a positive overpressure on a

solid Earth half-space should always result in a sub-

sidence (yBott:
1 \ 0).

Table 1

Selected parameters for representative models of GR0 air waves

h = 5 km h = 1 km h = 100 m

l 12 127 256 12 127 256 12

T 10271.29 1006.2 500.3 10274.60 1006.6 50.5 10275.0
(s) 10270.51 1006.2 500.3 10274.40 1006.6 500.5 10274.9

C 311.8 312.0 311.9 311.7 311.3 311.8 311.7
(m/s) 311.8 312.0 311.9 311.7 311.5 311.8 311.7

Z 0.773 0.903 0.901 0.0609 0.0965 0.1001 –0.025
(cm/mbar) 0.937 0.972 0.957 0.1055 0.1083 0.1085 0.0093

D 0.409 0.460 0.467 0.0551 0.0869 0.0901 –0.024
(cm/mbar) 0.476 0.488 0.491 0.0951 0.0973 0.0977 0.0092

R 1.892 1.966 1.930 1.105 1.111 1.111 1.010
1.967 1.993 1.949 1.109 1.112 1.111 1.010

η / yBott.
1 –12.48 –81.46 –155.94 –1.664 –14.90 –28.35 0.734

–1446.8 –8652.0 –16443.9 –285.49 –1671.7 –3079.9 –39.75

yBott.
1 / pBott. –32.7 –5.64 –2.99 –33.1 –5.84 –3.17 –33.2
(cm/mbar) –0.329 -0.056 –0.030 –0.333 –0.058 –0.0317 –0.333

μEff. 121.7 66.7 62.3 120.20 64.6 58.7 119.9
(GPa or 1010dyn/cm2) 12099 6676 6248 11946 646.5 5887 11955

PREM Upper mantle μ 67.3 67.3 67.3
(GPa or 1010dyn/cm2) 6734 6734 6734

FACTOR 26.1 30.0 30.5 21.2 24.0 24.2 20.4
27.8 30.8 31.2 22.1 24.1 24.4 21.1

ρw halved 54.2 60.2 61.1 43.7 48.2 48.5 41.9

– φ (Eq.9; GPa−1) 8.38 9.50 9.73 8.49 9.56 9.67 8.52
8.81 9.71 9.92 8.82 9.66 9.74 8.82

ρw halved 17.23 19.07 19.48 17.47 19.22 19.38 17.54

In each box, the first line (roman type) features a regular solid Earth model (inspired from PREM), while for the second one (in italics),

seismic velocities in the substratum (ocean and solid Earth) have been artificially multiplied by 10. Note that the units selected for l allow

the direct multiplication of parameters in common, practical units (densities in g=cm3 and seismic velocities in km/s)

1110 E. A. Okal Pure Appl. Geophys.



Conversely, for any computed air wave, we can

define an ‘‘effective rigidity’’ of the solid Earth as

lEff : ¼ � 3

4

1

W
� 1

k
¼ � 3

4
� a

lW
ð6Þ

where a is the radius of the Earth, and l the relevant

orbital degree. lEff : is listed at the bottom of Table 1

where it is compared with the actual value of the

rigidity in the sub-Moho, upper mantle layers of the

Earth model used (67 GPa for q ¼ 3:37 g=cm3
and

b ¼ 4:47 km/s, and 100 times more in the stiffer

model). The agreement is excellent for h ¼ 5 km

and a period of 1000 s, where the tail of the wave can

be expected to sample the solid over 1/4 of a wave-

length, or � 80 km. At shorter periods, it feels the

influence of the less rigid crustal layers, and lEff :

decreases, while at much longer periods, lEff : is

essentially doubled, reflecting the increased densities

and seismic velocities of the lower mantle.

Based on these results, we then proceed to

explore the physical response of an SLG structure,

and in particular the origin of the occasionally

negative values of Z and D. In Sect. 3, we showed

that the overpressure p ¼ �y2 is a robust descriptor

of the eigenfunction in the atmosphere, largely

oblivious to whatever substratum may be underlying

it. Thus, we consider a wave with overpressure pSurf :

at the bottom of the atmosphere, which we take as

positive for illustrative purposes. An oceanic layer

then functions as an amplifier of p from top to

bottom, with a gain R which can be regressed from

Fig. 9 as

R ¼ 0:219 h � 0:0175 f þ 0:929 ð7aÞ

where h is in km and f in mHz. In view of the small

dependence of R on f, and of its obvious value of 1

for h ¼ 0, the simpler regression

R ¼ 1 þ jh with j ¼ 0:198 � 0:2 km�1 ð7bÞ

appears more meaningful. We do not have at this

point a simple physical explanation for this property

of a water column.

The resulting overpressure at the bottom of the

ocean then yields a vertical displacement yBott:
1 of the

latter given by (5), where the parameter W is totally

independent of the presence and thickness of the

water layer, and is controlled only by the combination

of the rigidity of the solid Earth and the wavenumber

(Okal, 2003), the former depending slightly on the

latter on account of the structural stratification of

realistic models of the solid Earth. At this stage,

yBott:
1 = pBott: ¼ W is always negative from simple

thermodynamic arguments, and so is

yBott:
1 = pSurf : ¼ W ð1 þ jhÞ.
As we move up the water column, y1 will evolve

through its partial derivative ðoy1 = ozÞ which

according to Hooke’s law is related to the ambiant

overpressure through

o y1
o z

þ l
o y3
o x

¼ o y1
o z

þ k l y3 ¼ p

K
ð8Þ

where l y3 is the horizontal particle displacement, k is

the wavenumber, and K the bulk modulus of the

water.

A systematic investigation of the structure of the

eigenfunction reveals that the horizontal displace-

ment, l y3, is essentially constant throughout the water

column (varying less than 5% from top to bottom);

note that this property is identical in the case of

tsunami waves under the SWA, but the ellipticity at

the surface is significantly different. In addition, we

find that the second term in the left hand side of (8),

l ðo y3 = o xÞ, always remains much larger, by a factor

of 20–30 (‘‘FACTOR’’ in Table 1), than the right

hand side (p/K), which amounts to saying that the

water behaves like an incompressible fluid. More-

over, for a given ocean and solid Earth model, this

term remains independent of h and l. When scaled to

pBott:, it takes the value

/ ¼ l
o y3 = o x

pBott:
� �1

qw C2
ð9Þ

in practice about -10 GPa�1, C being the phase

velocity of the wave. We have no simple physical

explanation for this property, but have verified the

dependence of (9) on qw by artificially halving the

density of the ocean while keeping all other param-

eters unchanged (see Table 1).

Consequently, the gradient of vertical displace-

ment in the water column will be

o y1
o z

� � l
o y3
o x

¼ �/ pBott: ð10Þ

always positive and constant throughout the water
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column. One thus predicts that the displacement at

height z from the ocean floor will be

y1 ðzÞ ¼ yBott:
1 � z/ pBott: ¼ pBott: ðW � z/Þ

ð11Þ

With W and / both negative, (11) predicts a node of

y1 at a height

z0 ¼ W
/

¼ 3

4

qw C2

l
� 1

k
ð12Þ

inversely proportional to the wavenumber k, but

independent of h. Conversely, the surface displace-

ment g and hence the ratio Z will become negative if

this height is greater than the thickness h of the water

column, or for a given thickness h, if k \ k0 with

k0 h ¼ h l0
a

¼ 3

4

qw C2

l
� 10�3 ð13Þ

The values predicted by (13) for depths h ¼ 100; 200;

and 500 m are l0 ¼ 64; 32 and 12, respectively, using

l ¼ 67 GPa. In practice, a systematic computation

along the GR0 branch shows transition to negative g
at l ¼ 77; 35 and 6 respectively. In the first two cases,

the agreement is good; in the last one, it deteriorates,

on account of the increase in effective rigidity due to

deeper penetration of the eigenfunction at the very

large wavelengths involved. Finally, in the—unreal-

istic—stiffer model, and as documented in Table 1,

the gradient / is essentially unchanged, but since

yBott:
1 is much smaller in absolute value, y1 becomes

positive at a greater depth, and for all combinations

of h and T, the amplitude g on the surface is positive

for a positive overpressure p.

This discussion provides an explanation for the

existence of a domain of negative values of Z and D,

and for its delineation along the line (13), as noted

above in Figs. 6 and 8.

Finally, it is interesting to contrast this situation

with the case of a genuine oceanic tsunami under the

SWA, where the bottom overpressure will be

pBott: ¼ qwg g, and the value of W unchanged from

(5), resulting in

yBott:
1 ¼ � 3

4

qw g

l k
� g ð14Þ

while the horizontal displacement of the water col-

umn will be l y3 ¼ g = kh, independent of z, and

o y1
o z

¼ �/Tsu � � l
o y3
o x

¼ g
h

ð15Þ

As a result, the height z0 of the node of y1 will be

written as

z0
h

¼ 3

4

qw g

l k
¼ � yBott:

1

g
ð16Þ

In other words, in a tsunami, the node will scale with

h in the exact same [absolute] ratio that the vertical

displacement at the bottom scales with that at the

surface, always an exceedingly small number; indeed

z0 [ h would require l\ ð3=4Þðqw ga = lÞ � 0:72

for l = 67 GPa, which is clearly impossible. This

remark stresses once again the fundamental differ-

ence in structure between a genuine tsunami and the

prolongation of an air wave into the oceanic column.

The results of Sect. 4 have significant and some-

what sobering consequences regarding far-field

hazard potentially due to ocean-coupled air waves. In

the first place, coastlines are found to be effectively

protected by the presence of wide continental plat-

forms with shallow bathymetry. The example of the

Northern Bering Sea is reproduced at such locations

as the Adriatic Sea and the Bay of Biscay. Note that

the decrease of dynamic response over shallow

waters is in contrast to the amplification of a genuine

tsunami under Green’s Law (Green, 1837), although

extensive propagation of a tsunami over very shallow

waters eventually leads to breaking of the wave.

Second, as detailed by Harkrider and Press (1967)

and observed, e.g., at Adak (Fig. 7a) in deep water,

the maximum surface amplitude occurs at a group

time following propagation at the regular tsunami

velocity, as would be predicted using routine warning

algorithms. Warnings issued for the earlier arrival of

the air wave could actually convey a false sense of

safety given the smaller dynamic response at such

group times. Finally, the amplitudes recorded in the

far field from the Tonga ocean-coupled air waves,

generated by overpressures on the order of 1 to a few

hPa (mbar), have remained decimetric (zero-to-peak);

run-up values of 1 m or greater are generally

attributable to the genuine tsunami generated inde-

pendently of the air wave. Such amplitudes are

probably equivalent to their counterparts during the

1883 Krakatau explosion, as inferred by Harkrider
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and Press (1967), based on data compiled by Wharton

(1888). While the maximum size of any future similar

explosion remains speculative, it can be simply stated

that the exceptional events of 1883 and 2022 failed to

generate in the far field truly catastrophic sea waves

comparable to those of tsunamis due to mega-earth-

quakes at subduction zones.

Regarding the results of Sect. 5, the properties of

the ratio D have very serious consequences on the

present reporting of data from DART sensors, which

in its current form could be regarded as deceptive.

We recall that the DART instruments (and those

of comparable systems) consist of pressure sensors

collecting data on the ocean floor. Their concept

originated in the 1960s (Vitousek & Miller, 1970).

Following the unexpected detection of the 1979

Petatlán, Mexico tsunami by Filloux (1982), a num-

ber of prototypes were developed (Bernard and

Milburn, 1985; González et al., 1991) and the project

became operational in the early 2000s. It presently

constitutes a fundamental component of real-time

tsunami warning infrastructure (Bernard et al., 2006).

However, a major problem with the present data

reporting protocol of the DART network is that the

sensors measure the pressure signal pBott: but report it

as an equivalent surface displacement g (in units of

meters) using the hydrostatic conversion factor

ð1 = qwg � 1 cm/mbar). That ratio is adequate in the

case of tsunami waves under the SWA, which is of

course the main purpose of the DART project.

However, even for tsunami waves, but outside the

SWA, it already becomes inappropriate and must be

replaced with

g
pBott:

¼ cosh kh

qw g
ð17Þ

where k is the wavenumber of the tsunami (e.g.,

Dean & Dalrymple, 2000). Equation (17) is illus-

trated by the fact that DART sensors do not respond

to sea swell; it also explains the classical observa-

tion that a submarine does not feel weather-related

sea swell.

The situation is only exacerbated when consider-

ing waves of a different structure for which the use of

the hydrostatic ratio has simply no physical justifi-

cation. For example, Freitag and Okal (2020) have

discussed the response of a seafloor pressure sensor to

a long-period seismic Rayleigh wave and shown that

it functions as an accelerometer with a gain propor-

tional to water depth, and as a velocity sensor when

recording a P wave. In the case of a GR0 wave,

Sect. 5 has shown that the response parameter D will

never take the hydrostatic value 1 cm/mbar, but

rather will always be smaller. Equation (4) can serve

as an empirical substitute for the hydrostatic ratio in a

wide range of frequencies and ocean depths.

In this respect, the uninformed user of DART time

series reported in meters, trusting this information at

face value, will always overestimate the surface

displacement which actually took place during the

measurement. We have further verified on a prelim-

inary dataset that a similar bias will also take place

for the Pekeris undertone GR2, mentioned by Hark-

rider and Press (1967) as a potentially significant

contributor to the maregraphic record, although its D

values will generally be larger than those of the

fundamental GR0, indeed reaching 1 cm/mbar for

h ¼ 6 km and f ¼ 2 mHz. This would lead to a

systematic error in the interpretation of the relative

amplitude of the two wavetrains.

In order to prevent any further misinterpretation of

the data from DART and comparable networks,

we call on the operators of such systems to report

the data in its actual form as measured on the

ocean floor, namely as a pressure time series

expressed in units of hPa, rather than as an

equivalent ocean height.
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