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Abstract. We review the details of the thermodynamic formalism required for the determination of internally
consistent phase diagrams and for the calculation of stable phase assemblages and their associated elastic proper-
ties. We apply the method to the computation of seismic velocity profiles for a suite of upper mantle models
ranging in bulk composition from eclogitic through peridotitic to pure olivine, incorporating recent data on the
pyroxene-garnet system. We conclude that there is no need to invoke arbitrary changes in the bulk chemical
composition of the upper mantle; a uniform peridotitic upper mantle containing 70-75% olivine by volume isin
good agreement with upper mantle seismic observations. The details of various numerical procedures necessary

to the performance of such thermodynamic analyses are presented in Appendices.

Introduction

Radial variations in the velocities of seismic wave propagation in the upper mantle of the Earth are diagnos-
tic of changes in the elastic properties of the materials comprising the planet’s interior. These variations may be
ascribed to changes in the bulk chemical composition of the interior [e.g., Bullen, 1937], or they may be due to
the occurrence of structural transformations in material of uniform bulk chemical composition [e.g., Bernd,
1936]. The principle of Occam’s Razor [cf. Hamilton, 1837; Albutt, 1901] dictates that we should not invoke
additional free parameters (i.e., arbitrary changes in bulk composition) unless the smpler hypothesis (i.e., a uni-
form composition) is insufficient to explain the observations. Thus, here we examine the two primary families
of phase transitions (eclogite-garnetite and olivine-spinel) which are observed to occur in the laboratory under
upper mantle conditions [cf. Ringwood, 1975] in order to determine whether their respective characteristics are

sufficient to explain upper mantle seismic observations.
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Experimental data on the thermodynamic properties of minerals can be used to predict stable phase assem-
blages and mineral compositions as general functions of pressure, temperature, and bulk chemical composition.
Given suitable thermoelastic data, additional physical properties — such as density or seismic velocities — can
also be predicted for the various stable phase assemblages. These predicted properties can then be compared
with actual observations — of phase distribution, mineral composition, density, or seismic velocities — made on
natural systems in order to determine whether the model pressure, temperature, or bulk chemical composition is
appropriate to the system under investigation [cf. Bina and Wood, 1984, 1986, 1987]. By thus combining
independent data from calorimetric studies, phase equilibrium experiments, low temperature elastic constant
measurements, and seismic observations and applying these data together in an internally consistent fashion, we
can place tighter constraints upon mantle compositions than if we were to apply them in isolation.

Here we first review the techniques of calculating chemical potentials of mineral phases as explicit functions
of pressure, temperature, and composition. We then discuss the use of these chemical potential formulations in
computing internally consistent phase diagrams for ssimple systems and in determining stable phase assemblages,
mineral compositions, and aggregate elastic properties for complex multi-component systems. Finaly, we
present as an example the computation of equilibrium mineralogies and associated seismic velocity structures for
a suite of upper mantle model bulk compositions, ranging from eclogite to pure olivine, and their comparison
with observed transition zone seismic velocity profiles. In Appendix A we discuss the calculation of divariant
and univariant phase relations; in Appendix B we discuss the computation of stable phase assemblages by the
method of free energy minimization, and in Appendix C we briefly review the use of Newton’s method for the

solution of non-linear equations.
Computing Chemical Potentials

In order to perform thermodynamic calculations with intent to determine phase equilibrium properties, we
must have some quantitative measure of the relative stabilities of mineral phases. For this purpose we make use
of the ‘‘chemical potential’’, éi"’, of a component i in the phase ¢. This chemical potential is defined [Denbigh,

1981, p. 79] as the partial molar Gibbs free energy,
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where G? is the Gibbs free energy of phase @; n® is the number of moles of component i in phase ¢, and P and
T are the pressure and temperature of interest, respectively. The chemical potential [cf. Denbigh, 1981, pp. 98-
104] may be expressed as a function of pressure, temperature, and composition:
P
G =P - T 950 + [ W 2(B)dP + RT In Yan (X . (1)
1
Here, i“’ﬁ? and i‘”é? are the partial molar enthalpy and entropy, respectively, of pure (‘‘standard state’’) com-
ponent i in phase @ at temperature T; “"\7?(!5) is the partial molar volume of pure component i in phase ¢ at tem-

perature T and pressure P; “PaPYT(Xi“’) is the activity of component i in phase ¢ at temperature T, pressure P, and

composition X% X is the mole fraction of component i in phase @, and R is the universal gas constant.
Enthalpy and Entropy Terms

Data on the enthalpy and entropy of a component are available at 1 bar and some reference temperature, Ty,
We correct these values to the temperature of interest, T, as follows:
T
OH = 0HP + [ C(T)dt
To
-
o - 1 . — ~ A
059 = iosp + | = "CAT)dT
To
where “F’Ep('f’) is the partial molar isobaric heat capacity of pure component i in phase ¢ and is itself generally a
function of temperature. (For solid-solid phase relations, an extremely good smplification is that the heat capa-
city difference between high and low pressure phases is independent of temperature [Wood and Holloway,

1984]. Thisis equivalent to fixing all of the heat capacities at their values for the reference temperature, T,.)
Volume Term

The molar volume of a component is generally available at 1 bar and some reference temperature, To. We

first correct for the temperature of interest, T:
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:
NP1 bar) = W2 (1 bar) - exp || a(T)dT

To

where i“’0(('T') is the volume coefficient of thermal expansion of pure component i in phase @ and is itself gen-
erally a function of temperature. (At moderate temperatures %o is expected to increase linearly with T, attaining
a limiting value at high temperatures [cf. Ashcroft and Mermin, 1976, pp. 490-495].) We next correct for the
pressure of interest, P, making use of the third-order Birch-Murnaghan equation based upon the finite strain for-

mulation of Birch [1952]:

5
P = 3 oK (LT [1 + of ]7 [1 - ZEf] , @
where:
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Here '®{~T) js the isothermal bulk modulus (*‘incompressibility’’) of pure component i in phase ¢ at 1 bar and

temperature T. This value, and its pressure derivative, are obtained from the generally available adiabatic bulk

modulus (and its pressure derivative) at 1 bar and a reference temperature Ty, i“’KS’T"), via the relationships:

icpK_I(l,T) — i(pKél,T) . [1 +T i(pa(T) i(py]—l

i i -1
a1 (9% | [1 + T o) i«oy] | — Ky T-d[a(T)9y)/dP-[ I+T%a(T)%y] " |
dP dP
where:
T
o 1) = oy éllTo) Cexp |- i<p5sJ' o (T)dT | . ©)
To

In the equations above, the Griineisen ratio ' and the Anderson-Griineisen parameter '3 for pure component i

in phase @ are given by:

i(p5 — -1 ai(pKS

S '|<pG |(pKS oT p
| 9 i(pKS iq)\_/o

= T

Given, then, this formulation for the pressure dependence of the molar volume, we must now integrate equation



Bina & Wood (1987) 5

(2) in pressure in order to obtain the IVdP term in equation (1). Since equation (2) is an implicit function for

V(P), we choose [G. Héelffrich, pers. comm., 1987] to integrate it by parts.

P W 2(P)
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where we obtain “"\_/?(P) by solution of equation (2) using a one-dimensional Newton’s method (see Appendix

C).
Activity Term

Finally, we require a relationship between the activity “PapyT of component i in phase @ and the composition
X® of phase ¢, where X is the mole fraction of component i in phase ¢. These activity-composition relation-

ships are of the form:

Papr =Ty [Xi"’,P,T] ,
where f , is a function whose form depends upon the details of crystal structure and inter-site interactions.
Activity-composition functions for pyroxene components are presented by Wood and Holloway [1982, 1984],
and those for garnets are discussed by Haselton and Newton [1980], Wood and Holloway [1982, 1984], and
Bina and Wood [1984]. Such relationships for olivine components are presented by Fisher and Medaris [1969]

and Wood and Kleppa [1981] while functions for the 3 and y polymorphs are given by Bina and Wood [1987].
Computing Phase Equilibria in Simple Systems

Given formulations for the chemical potentials of components as functions of pressure, temperature, and

composition (equation (2)), we may now proceed to the calculation of phase eguilibria in simple systems. Con-



Bina & Wood (1987) 6

sider a system of two components, 1 and 2, and two mineral phases, a and y; we wish to determine the condi-
tions of pressure, temperature, and mineral composition under which the two phase a and y can coexist at equili-
brium. At equilibrium, the chemical potential of a given component must be the same in all phases [cf. Den-

bigh, 1981, p.86], thus:

GX(P,T.X®) = GY(PT X))

—4 _ =y (4)
G;(PT.X5) =GJ(PTXY) .

Since X&' =1 - X{ and XJ =1 - XY, we effectively have two equations in four unknowns: P, T, X{, and XY.
At any given pressure and temperature then, equations (4) reduce to two equations in two unknowns, and we
may solve them by a two-dimensional Newton's method (see Appendix A) for the compositions X{ and XY at
which the phases o and y can coexist in equilibrium. In Figure 2-3, for example, we have computed, at 1000°C,
the compositions at which a-olivine and y-spinel may coexist over a broad range of pressures, thus defining the
“‘a+y’ divariant loop shown in that figure.
This procedure may be extended to the computation of the conditions under which three phases, a, (3, and v,

may coexist in a binary system. In this case, equations (4) become:

GiPT.XD) = GEPT X

G{P,T.XY) = GY(P,T.XY)

GJ(P,T.X$) = GE(PT X5
GS(PT.XS) = GYPT,XY) .

®)

Again, X§ =1 -X§ X =1-Xp, and X¥ =1 - XY, so we have four equations in five unknowns: P, T, X{,
XP, and X). At any given temperature then, equations (5) reduce to four equations in four unknowns, and we
may solve for the compositions X{, Xf, and XY and the pressure P at which the three phases can coexist in
equilibrium by using a four-dimensional Newton's method (see Appendix A). This is illustrated as well in Fig-
ure 2-3, where we have computed the compositions and pressure at which a-olivine, B-modified-spinel, and y-
spinel can all coexist in stable equilibrium at 1000°C, thus defining the a+B+y univariant line shown in that
figure.

Hence, by this procedure we may compute a phase diagram, such as Figure 2-3, for a simple system from a
set of thermodynamic data. Independent of these data, there may be available data from ‘‘phase equilibrium

experiments’. Such data, shown by the polygonal symbols in Figure 2-3, directly indicate which phases can
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coexist in equilibrium at specific conditions of pressure, temperature, and composition. Thus, if such experimen-
tal data have truly demonstrated equilibrium (e.g., by ‘‘reversibility’’ [Fyfe, 1960]), they serve as independent
delimiters of the stability fields in the phase diagram. For a phase diagram to be internally consistent, these two
independent constraints upon the topology of the phase diagram must agree. For example, any experimental
points at which only y phase is stable must lie in the computed y phase stability field, above the a+y divariant
loop; moreover, any experimental points at which a and y phases coexist in equilibrium must fall along the cal-
culated stability curves bounding the a+y divariant loop.

This criterion of internal thermodynamic consistency can be of great utility when certain parameters in the
thermodynamic model are unknown or poorly constrained. The appropriate procedure is simply to alow the
uncertain thermodynamic parameter to vary within the bounds of its uncertainty until the computed phase
diagram best matches the phase equilibrium data. Depending upon the complexity of the system under con-
sideration and the number of variable parameters, this variation of parameters fitting procedure may be carried
out by systematic trial and error or by a formal least squares inversion [cf. Gill et a., 1981, pp. 133-141]. In
either casg, it is important to perform a sensitivity analysis to determine how well this inversion procedure actu-
aly constrains the parameters and how sensitive the calculated phase diagram is to small changes in these
parameters. (In general, the greater the number of parameters which must be determined in this manner, the
more poorly constrained will be the individual parameters) As an example, Bina and Wood [1984] used avail-
able phase equilibrium data to constrain the pressure dependence of the volume change of the eclogite to gar-
netite phase transition, since the bulk moduli of some of the garnetite phases were poorly constrained parame-
ters. Conversely, the bulk moduli — and hence the pressure dependence of the volume change of phase
trandition — of the a-olivine and B-modified-spinel phases are well constrained. Bina and Wood [1987] used
these parameters to tightly constrain the width (in pressure-composition space) of the a+( divariant stability

loop, since this region of the phase diagram was poorly constrained by available phase equilibrium data.

Computing Stable Assemblages in Complex Systems

Now that we have both a formulation for the chemical potential of a component (equation (1)) and a set of
thermodynamic data parameterizing internally consistent phase diagrams for numerous simple systems, we are

ready to combine all of these data to calculate stable phase assemblages, mineral compositions, and associated



Bina & Wood (1987) 8
physical properties in complex multicomponent systems.
Phase Assemblages and Compositions

Given a system of arbitrary bulk chemical composition, we wish to determine which mineral phases can
coexist at equilibrium at some pressure and temperature of interest, and we wish to know the equilibrium com-
positions of these stable phases. The equilibrium state of a system of fixed bulk composition is characterized by

the minimum value of the Gibbs free energy of the system [cf. Denbigh, 1981, p. 83], namely:

G =3 GYPTX)n®=minimum
al i,
where G®(P,T,X) is as in equation (2) and X is a function of the n®, the number of moles of component i in
phase @. For computational purposes, we may temporarily cease to distinguish between components and phases,

instead counting each phase of a given component as a separate component. (E.g., a—-Mg,SiO, and B—-Mg,SIO,

will now be considered as distinct components.) Thus, for an N-component system, we have at equilibrium:

éini = minimum . (6)

Mz

S —
G =

I
MY

Here n; is the number of moles of component i in the system, and E;i is the chemical potential of component i
and is a function of pressure, temperature, and some subset of the n; (i.e., the n; for those components j which
were previously considered to be in the same phase as component i). Upon solving equation (6) at fixed pres-
sure, temperature, and bulk composition, we obtain the n;, namely the distribution and compositions of the stable

equilibrium phases. Methods for solving eguation (6) under these conditions are discussed in Appendix B.
Other Physical Properties

Given the composition of the stable phase assemblage at some pressure and temperature, in terms of either n;

or n® it is a simple matter to compute the density of the assemblage:

alig
p = — ,
z n® 'Wpr
alig

where M; is the molar mass (‘‘gram formula weight'’) of component i and the i“’\_/RT are the partial molar

volumes from equation (2). Given the adiabatic bulk moduli K™ from equation (3), we may correct them for



Bina & Wood (1987) 9

pressure using a differentiated form of the Birch-Murnaghan equation (2):
5
o P = T (BT [1 + 2f ] 2 [1 + 7f — 28f [2 + of H ,
and compute the Voigt-Reuss-Hill (VRH) averaged aggregate bulk modulus [Watt, 1976]:

-1
Vo & = [ > T)-M%/S
al o |(pK P T

EKED = 5 w3 HED,
ali,e

S0 that:

LD = 2 [5KED + 2K LD

where w3® represents the volume fraction of phase @ of component i in the system:
i(p\_/P,T

—
z N 'Wpr
alig

It is now a simple matter to calculate the bulk sound velocity Vo, since the seismic parameter @ is given by:

YK g

Wsp

This may be directly compared to observed seismic profiles, given complimentary P- and S-wave velocity data

(Vp and Vg, respectively), since:

4
® = (Vp)? - §(Vs)2 .
If, on the other hand, we wish to predict independent P- and S-wave velocities for our model system, we

require data regarding the shear moduli "% of the various components, since:

2 —
(Vp)* = e
S
(VP = syg ,
where, as for the bulk modulus ¥K g, we have:
-1
\%?HHP,T - i z (*)%ls N z w%,s_i(pu(P,T) ) (7)
2 al i,Q '(pH[ M ali,Q

Thus, in order to compute the aggregate shear modulus from equation (7), we require knowledge of the shear

moduli of all of the components in all of the phases at 1 bar and some reference temperature T, as well as their
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pressure and temperature derivatives [cf. Bina and Wood, 1987], namely:

T P
. . i - i A
|(puP,T — |(puP,T0 + J- %:r& daT +I a_i(’& dpP.
To P 1 T

Thus, to compute independent P- and S-wave velocities for, say, an N-component/phase system requires 3N
additional parameters — a shear modulus and two derivatives for each component/phase. As these additional
parameters play no role in the thermodynamic formalism applied earlier to obtain an internally consistent data
set, poorly known values cannot be further constrained by independent phase equilibrium observations. Thus,
unless unusually good data on the pressure and temperature dependence of the shear moduli are available, such
computation of individual P- and S-wave velocities is subject to considerably greater uncertainty than the com-

putation of the bulk sound velocity V.
Application to the Upper Mantle

As mentioned above, Bina and Wood [1984] computed internally consistent high pressure phase diagrams for
the simple systems MQ,;Si4,O1>-M@3Al,Si301,, FeSi4010-FesAlLSiz04,, and CaMg,Si4O15-Cay sMgyp sA1,Si3015.
Using a free energy minimization approach, they showed that the eclogite to garnetite transition — the dissolu-
tion of pyroxene into the garnet phase to form a garnet-majorite solid solution — occurs gradually over a broad
depth interval and would produce no sharp increase in seismic velocity such as that observed in the earth at
400 km depth. Bina and Wood [1987] determined an internally consistent high pressure phase diagram for the
Mg,SiO4-Fe,Si0, join and demonstrated that the a-olivine to B-modified-spinel transition would occur over a
sufficiently small depth interval to produce a sharp seismic discontinuity such as that at 400 km. They con-
cluded, as did Weidner [1985], that observed seismic velocities in the upper mantle of the earth are consistent
with an upper mantle of a uniform olivine-rich, or peridotitic, bulk composition. In this section we expand upon
this previous work by incorporating more recent experimental results into the internally consistent thermo-
dynamic data set. We then use this data set to compute seismic velocity profiles for a suite of upper mantle

models ranging from eclogite to pure olivine in bulk composition.

Thermodynamic Data
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For this analysis, we made use of the thermodynamic data set for low pressure phases of Wood and Hollo-
way [1984]. To this we added the recent data of Kandelin and Weidner [1984] for jadeite and that of Duffy and
Vaughan [1986] for enstatite. For the a, 3, and y phases of olivine, we adopted the data set of Bina and Wood
[1987]. For the quartz, coesite, and stishovite phases of SiO,, we used the data of Holm et al. [1967] and Jean-
loz and Thompson [1983]. Finally, for the high pressure majorite components of the garnet phase, we made use
of the thermodynamic analysis of Bina and Wood [1984], modified in the manner described below.

Bina and Wood [1984] derived an internally consistent thermodynamic data set for the transition:

M 4Si 4012 =M 4Si 4012
pyroxene garnet

using the phase equilibrium data of Akaogi and Akimoto [1977] and Akaogi [1978]. However, recent work by

M € {Mg, Fe, CaysMgys} ,

Akaogi et a. [1987] has shown that the pressure calibration used in these phase equilibrium studies in subject to
considerable error. Akaogi et al. [1987], using numerous recent pressure calibration data, have produced a
revised pressure scale for the experiments in the Mg,Si4O015-MgzAl,Siz0q5 system. We have applied their pres-
sure correction to the Fe;Si,O;,-Fe3Al,Si30,5 and Ca,M@,Si404,-Cay sM@; sAISI;04, data as well. These recali-
brated data points are shown by the polygonal symbols in Figures 1 and 2. (Note that these are synthesis data
and have not rigorously demonstrated equilibrium by the criterion of ‘‘reversibility’’ [cf. Fyfe, 1960].)

In addition, Akaogi et al. [1987] used an in situ synchrotron technique to determine the bulk modulus of
Mg,Si,O1, majorite. Bina and Wood [1984] made use of the majorite bulk modulus data of Jeanloz [1981].
However, these data may be subject to considerable error since they give majorite bulk moduli which are larger
than the moduli of the corresponding aluminous garnets, while simple crystallochemical arguments [D. Weidner,
pers. comm.; Akaogi et a., 1987] suggest that they should be smaller. The new data of Akaogi et al. [1987] do,
in fact, yield values for the majorite components which are smaller than those for their aluminous counterparts.
Akaogi et al. [1987] performed bulk modulus measurements on samples of two garnets — one of composition
100% pyrope and the other of 42% pyrope with 58% Mg-majorite — and extrapolated their results linearly to a
pure Mg-majorite endmember. Since their values for pure pyrope differ from the established value [Jeanloz and
Thompson, 1983; Levien et al., 1979] by 0.06 Mbar, we have corrected their Mg-majorite value for systematic
error by the same amount. Finally, Akaogi et a. [1987] measured bulk moduli for Mg-majorite only. We have

estimated values for the Fe- and CaMg-garnets by assuming the relationship:



Bina & Wood (1987) 12

Mg,Si,01,(a) Fe,Si401,(d0) Ca,Mg,Si,0,,(gt)
S S K S

K K
K Mg3AI1,Si50,,(91) - K FesAl,Si30,,(at) B K Cay Mg, ALS ;0,0
S S S

giving the bulk modulus values shown in Table 1. Using this revised data, we have calculated the internally

consistent phase diagrams for the eclogite-garnetite transition shown in Figures 1 and 2.

Results

Using the internally consistent thermodynamic data set described above, we have applied the technique of
free energy minimization and calculated stable phase assemblages and their corresponding seismic velocities
under upper mantle conditions for five model mantle bulk compositions: an eclogite (a natural alkali olivine
basalt from Green and Ringwood [1967]), a ‘‘piclogite’’ (a model from Anderson and Bass [1986]), a pyrolite
(model Pyralite 111 from Ringwood [1975]), a peridotite (a natural Lizard peridotite from Ringwood [1975]), and
pure olivine (FogFayg). These models represent a range of bulk composition from olivine-free eclogite at one
extreme to 100% olivine at the other; the low pressure mineralogies of these model compositions are given in
Table 2. Calculated bulk sound velocities for these five compositions are given in Figure 3 along 1700 K and
2000 K isotherms for pressures corresponding to those in the transition zone, and the reference seismic model
GCA+TNA [cf. Bina and Wood, 1987; Walck, 1984; Grand and Helmberger, 1984] is shown for comparison.
Clearly the olivine-poor compositions are unsatisfactory: the eclogite exhibits no 400 km seismic discontinuity,
and the magnitude of the 400 km discontinuity computed for the piclogite model is far smaller than that actually
observed in the earth. Seismic velocities for the pyrolite are in much better agreement with the observed veloci-
ties, but the calculated 400 km discontinuity for this composition is still too small. The size of the 400 km
discontinuity computed for the pure olivine composition is somewhat larger than observed seismicaly. The
best-fit model bulk composition for the upper mantle appears to be a few more percent enriched in olivine than

the peridotite (at 74% olivine).

Conclusions

In summary, available thermodynamic data may be combined with data from phase equilibrium experiments
to produce internally consistent phase diagrams for simple systems, with the well-constrained features of one

data set placing constraints upon the more poorly-determined features of the other data set. The internally con-
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sistent thermodynamic and thermoelastic data set which parameterizes these phase diagrams may then be used to
calculate stable phase assemblages and associated elastic properties (such as seismic velocities) as functions of
pressure and temperature for model bulk chemical compositions using the technique of free energy minimiza-
tion. Here we have computed seismic velocities for a variety of model upper mantle bulk compositions ranging
from eclogite to pure olivine. Upon comparison with observed transition zone seismic velocities, we conclude
that a peridotitic bulk composition (~75% olivine) is consistent with upper mantle seismic velocities and is
required to generate a 400 km discontinuity of appropriate sharpness and magnitude. We find no evidence for

chemical dratification in the mantle at depths shallower than 650 km [e.g., Anderson and Bass, 1986].
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APPENDIX A: CALCULATION OF DIVARIANT PHASE RELATIONS

The system of equilibrium conditions in the divariant region a+3 consists of equations (cf. equation (2-3)) of

the form:

GISIQZS'O4 = Gl\%lgzsio4
Ggezso4 = GEeZS'O4 :
We may define difference functions, F, such that:
Ff=Gf - GP,
for each component i, and we may then seek solutions to equations of the form:

Fop [xf, xg P, T] =0.

In the divariant region, the requisite system of equations is simply:

FiP [xf, xg, P, T] =0
FgP [xf, xg, P, T] =0.
Where X = 1 — X{ for any given phase .
To solve for the case of equilibrium involving all three phases a, 3, and y, we need only include two more
equations — those involving either the a-y or the B-y difference functions — in this system.
In order to solve the system, we may employ Newton's method [cf. Gerald and Wheatley, 1984, pp. 133-
139] to reduce the solution of the system of non-linear equations to iterations of solutions of systems of linear
equations. We accomplish this by developing the first-order (i.e., linear) Taylor series approximation [cf. Hur-

ley, 1980, pp. 710-714] to each function F;, so that:

oF P oF P
0= [FfB ] + aXf ’ [anew_xfold] + W ’ [XEHEW_XEOId]

IFgP FgP (A1)
0= [anﬁ] + GXf ’ [anew_xgold] + O_XP_ ! [anew_xfold] )

where each function F; and its derivatives are evaluated at the appropriate approximate root X{yg.
We may use forward finite differences [cf. Gerald and Wheatley, 1984, pp. 233-238] for the calculation of

derivatives, so that:
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OF TP FoP [Xfold"'a: XEoa P, T] - F® [Xf,olda XEoa P, T]
oxX g P,T,xfold~ 0
OF P FoP [Xffoldy XPoatd, P, T] - FP [xfom, Xfoa P, T]

1
PT X g o

L oxF
where 0 is some small finite perturbation parameter.

The linear systems (A-1) may be solved by a matrix method, such as Gaussian elimination employing partial
pivoting [cf. Gerald and Wheatley, 1984, pp. 88-95]. Each solution of a system such as (A-1) will give the
correction factors (X {nen— X£od) by which the previous approximate solution X f,4 must be modified, and hence
values for X{,,, may be obtained for all pertinent phases @. These corrections may be applied iteratively until
the absolute differences between consecutive solutions fall below some arbitrary tolerance value. Note that,
when solving the univariant problem for three coexisting phases numericaly, it may be necessary to scale the
pressure variable to the same order of magnitude as the composition (mole fraction) variables (i.e., order 107%) in
order to avoid forming a nearly singular matrix during linearization.

Initial estimates of the solution variables for Newton’s method may be obtained as follows. The partia
molar free energy of Mg,SiO, in the a phase is given by:

P
Gig,50, = Gligsi0,T) + {vh‘zgzgo4dp +RT In afiy,so, - (A-2)
In equation (A-2), G,&gzgoﬂ refers to the free energy of pure Mg,SiO, in the a phase at temperature T and

1 bar. Equilibrium between a and 3 phases gives the conditions:

@

fig,s0, = Gtig,s0, = AGHigko, = 0
G, s0, = G50, = AG&do, = 0.
Upon constructing equations similar to (A-2) for the 8 phase and for the Fe,SiO, components, the above may be

expanded to give:
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( p
AGEso, = AGHEso,T) + [AVELs0 dP + RT In kfigho, = 0
1
b (A-3)
AG&fso, = DG&Es0,T) + [AVEL dP + RT In ko, =0,
1
|
where the equilibrium constants (the K~ ?'s) are given by:
. _ afgngSO‘,
KMgzgiO4= 5
aM92904
a.B _ agezso4
8re,S0,
We may begin by assuming an ideal single-site binary solid solution (i.e., a® = X%, so that:
o Xfig,s0,
KMEZE@ vy E—
XMg,si0,
oo _ Xg%so4 _ 1_Xr8|g29'o4
KF92£O4 = <% = m .
XF%SO4 1_XMg28'O4
Upon solving these two equations in two unknowns (the X,\‘ﬁgZS-OA’ s), we obtain:
o K so0,~1
Xng,sio, = B @
Fe,Si0, KMg,si0, (A-9)

Xfig,s0, = Xtig,s0, * Kig,s0, -
We may now solve the two equations (A-3) simultaneoudly for the two unknown equilibrium constants (the

k%~ P's) and insert these values into equations (A-4) to obtain our initial compositional estimate.
This estimation process is easily extended to four equations in four unknowns, for approximation to the solu-

tion of the case of univariant equilibrium involving al three phases, by the inclusion of suitable expressions

involving k&Y.
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APPENDIX B: MINIMIZATION OF FREE ENERGY

The problem of free energy minimization is to determine the relative amounts of a set of components which
define the minimum value of the Gibbs free energy of the system at a pressure and temperature of interest and a
fixed bulk chemical composition. Here we examine a steepest descent method [cf. Storey and Van Zeggeren,
1964], which utilizes only first order derivatives, and a quasi-Newton method [cf. Gill et a., 1981, pp. 116-125],
which utilizes second order derivatives, for computing the minimum of the Gibbs free energy function subject to
the constraint of constant bulk composition. Finally, we discuss the relative practical utility of these two

methods.
Steepest Descent Method

The problem is to minimize the free energy G of the system under consideration in terms of the chemical
potentials (_Si and amounts n; of the N components i comprising the system, namely:
N _
G = 3 Gn = minimum . (B-1)
i=1
The constraint of constant bulk chemical composition may be formulated in terms of the mass balance condi-

tions:

N
230 =Y, j=L, - M. (B-2)
i=1
Here we have fixed the bulk composition in terms of the fundamental oxides in the system; g; is the number of
moles of oxide j in one mole of component i, and Y; is the total number of moles of oxide j in the system.

Upon introducing a search parameter A, the differential forms of equations (B-1) and (B-2) become:

dG _ J— dn
= = %GiTx : (B-3)
1=
subject to:
N dni
li—— — 01 J:]-y e yM ] B'4

where we have used the Gibbs-Duhem equation [cf. Denbigh, 1981, p. 93] at constant pressure and temperature:

N _
dG = ZGidni ,

i=1
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in the differentiation of equation (B-1). In order to prevent the n, from assuming nonphysical negative values,

we adopt the change of variables:

n; = exp(n;) -
Hence, the equations (B-3) and (B-4) become:
dG _ X~ dn;
> -2
N dn. _
Za1 M =0, j=L,--- M.

At any given composition {r;} (given by the valuesn';), we find the direction of steepest descent by determin-

d
ing the N values of the Wﬂ for which (;_;; is an extremum. Upon introducing an additional normalization con-

dition, our problem becomes:

dc _ N~ dn; _
e IZlG i —— - = extremum
dn;
Za,n.—'=0, =L M (B-5)
% dn. ,
i=1

where the é’i represent the chemical potentials of the N components at the composition {r;} . Applying the

method of Lagrange multipliers [cf. Hurley, 1980, pp. 223-228], we abtain:

S, dni % ”'—Mzzqun L.
i=1 d)\2 =1 d)\z =1 J| =1 d)\2 '
an;
for the M+1 Lagrange multipliers v and ;. We are solving for the N values of -dr;\_, at the composition {ri } {V;
h il ak bi alues; h h
t EW may take on any arbitrary values; hence we have:
Gini - - Zalai ni=0,i=1---N. (B-6)
j=1

Upon multiplying by agn’;, summing over all N components i, and applying the mass balance condition (B-4),

we arrive at:
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j i=1
We may solve this system of M linear equations for the M unknown values of the &; using such standard tech-
niques as Gaussian elimination with partial pivoting [cf. Gerald and Wheatley, 1984, pp. 88-95], and from equa-
tion (B-6) we have:

dni _

> =L N

_ M
Gi- 2§
j=1

where v is chosen to satisfy the normalization condition comprising the third of equations (B-5). We now repeat
the above procedure, obtaining our new composition {fi} ' from the values of fj; given by:

dn;
Iy

where the sign and magnitude of AA are chosen by an accurate line search technique [cf. Gill et a., 1981, pp.

Ni=n+ AN, i=L - N

100-102] so as to produce a sufficient decrease in the free energy G.
This procedure may be repeated iteratively until no further sufficient decrease in the free energy G can be
achieved with suitable variations in composition. In practice, it is often useful to impose the mass-balance con-

straints (B-2) at every iteration to prevent the compositional drift which attends the use of finite values of AA.
Quasi-Newton Method

The problem is to find the compositions n; at which the free energy G of the system attains a minimum:

G(n) = G'n = minimum (B-7)

subject to constant bulk composition formulated in terms of the mass balance constraints:

cn)=An-y=0. (B-8)
Here G and n are N-element vectors whose ith elements are the chemical potential and number of moles,
respectively, of component i; y is an M-element vector whose jth element is the total number of moles of oxide
j in the system, and A is an MxN matrix whose ijth element is the number of moles of oxide j in one mole of
component i. In order to ensure that the compositions n; do not take on nonphysical negative values, we adopt
the change of variables:

n; = exp(n;) -
We now introduce a quadratic penalty function formulation [cf. Gill et al., 1981, p. 208], transforming equations
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(B-7) and (B-8) into:

f(m) = GM) - 6c(n)’c(n) = minimum (B-9)

where 8 is some scalar penalty parameter. Given an initial estimate of the composition ', we expand our new

objective function f(n) in a second order Taylor series [cf. Hurley, 1980, pp. 710-714] about n)’:
T r l I r
f(n)=f(n)+gT[n - ]+7[n - ]TH [n -n ] :
Here g is the gradient vector evaluated at n =n":

g =if ‘“, ,

and H is the symmetric NxN Hessian matrix such that:

%
Hij = ———
Y onon;

n
Now if H is positive definite [cf. Gill et al., 1981, p. 25], then the minimum of f(n) is given by:

f =g+ [n—n’]H=0, (B-10)

so that we may obtain our next compositional estimate § from:

fi=n'-eH7g, (B-11)
where € is chosen by line search [cf. Gill et a., 1981, 100-102] so as to produce a sufficient decrease in f(n).
While we may compute the gradient vector g at each iteration by a finite difference method [cf. Gerald and
Wheatley, 1984, pp. 233-238], the determination of the inverse Hessian matrix H ™! at each iteration is an impos-
ing computational problem. We proceed by beginning with an initial estimate Q for H™, the identity matrix |
for example, and updating the second order information in Q at each iteration. Our new compositional estimate
f from equation (B-11) now becomes:

n=n-¢Qg.
Since, from equation (B-10), we have that:

H—lpjf ‘ﬁ—g]ﬂi—n’, (B-12)

we correct Q for the next iteration by an ‘‘update matrix’’ D, namely:

Q = Q + D 1
such that Q also satisfies condition (B-12):
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Qpﬁ%—g]=ﬁ—nﬂ

From the numerous possible choices [cf. Gill et al., 1981, pp. 117-120] for the form of D, we have chosen the

Davidon-Fletcher-Powell (DFP) [Davidon, 1959; Fletcher and Powell, 1963] update formula:

D = ' QzZ'Q
'z  2Qz '

where:

rsf-n
z =[Jf ﬁ—[]]]f|,|,:g—g.
This DFP update has the property that if the initial approximation to the inverse Hessian Q is positive definite,

then all subsequent updated estimates Q are also positive definite.
This procedure may be repeated iteratively until no further sufficient decrease in the objective function f(n)

can be achieved with suitable variations in composition.
Relative Utility of Methods

The steepest descent method discussed above is relatively efficient in that few evaluations of the objective
function are required for each determination of new compositional estimates. However, inasmuch as this
method utilizes only first-order information about the objective function, it tends to behave very poorly near the
solution so that a large number of iterations produce only negligible progress toward the minimum [Gill et al.,
1981, pp. 103-104]. The quasi-Newton method, on the other hand, takes advantage of second-order information
about the objective function. Thus it converges relatively rapidly towards a solution, even in the region near the
minimum. This method, however, is relatively expensive in terms of computation, with numerous evaluations of
the objective function being required for each determination of new compositional estimates. A good strategy
for the implementation of these two methods, then, would be to employ the efficient steepest descent method

initially and to switch to the rapidly converging quasi-Newton method in the region near the minimum.
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APPENDIX C: SOLUTION OF NONLINEAR EQUATIONS

In this section we discuss the application of Newton's method [cf. Gerald and Wheatley, 1984, pp. 133-139]
to the solution of nonlinear equations. Given a nonlinear function f(x), we wish to find a value of x such that:
f(x) =0. (C-1)
If we have some estimate x' of the solution, we may expand the function f about x' in a first-order Taylor series
[cf. Hurley, 1980, pp. 710-714]:

fx) =f(x') +g [x - x'] , (C-2)
where g is the first derivative of f evaluated at x=x":

g

Thus, from equations (C-1) and (C-2), we have that:

f(x’)+g[x—x'] =0,
so that we may obtain our next estimate X of the solution from:
_ fX)

g
We may repeat this process iteratively and refine our compositional estimate to within some arbitrary precision.

X =X
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Figure Captions

Fig. 1. Isothermal pressure-composition diagram showing computed data boundaries of pyroxene-garnet misci-
bility gap. Recalibrated data points of Akaogi and Akimoto [1977] denote the high pressure stability limits of
the low pressure assemblages (upward-pointing triangles) and the low pressure stability limits of the high pres-

sure assemblages (downward-pointing triangles).

Fig. 2. Isothermal pressure-composition diagram showing computed data boundaries of pyroxene-garnet misci-
bility gaps. Recalibrated data points of Akaogi and Akimoto [1977] and Akaogi [1978] denote the high pressure
stability limits of the low pressure assemblages (upward-pointing triangles) and the low pressure stability limits

of the high pressure assemblages (downward-pointing triangles).

Fig. 3. Caculated bulk sound velocity (\/5) as a function of depth for a suite of mantle bulk compositions
along 1700 K (dashed) and 2000 K (solid) isotherms. Composite seismic profile GCA+TNA (dotted) is shown

for comparison [see text for references).
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TABLE 1. Data Set Consistent with Recalibrated Phase Equilibria

M@,S;0s | FES06 | CaMgSi;0s | M@sSi,012 | FesSif01p | CasMgSi4Orp
phase opX opX CcpX gt gt gt
Stoook (ca/K) 93.51 109.94 96.0 189.13 224.26 190.43
ap x10°% (K™ 22.031 29.3 21.013 12.552 7.858 7.760

da 5 11—
—— | %108 (K™ 0.010 0.013 0.010 0.026 0.029 0.030
P
V208 (€M) 62.66 65.94 66.10 114.20 117.06 126.24
Kos (GPa) 103.3 104.2 120.5 163. 168. 164.
45-95 45-95 45-95 3.5-55 3555 unknown
dKos | |raw
daP |, [adj. 5.0 5.0 5.0 4.5 45 45
% 11 11 11 11 11 11
Os 6.0 6.0 6.0 6.1 5.4 6.0
H ook (cal) -16840. -6930. -35320. 816. 27041. -48038.

26

Phases are orthopyroxene (opx), clinopyroxene (cpx), and majorite (gt). Stk iS entropy at 1000 K; o, thermal

expansion extrapolated to 0 K; Vg 508, Zero-pressure volume at 298 K; Kgs, zero-pressure adiabatic bulk modulus

at 300 K; vy, Grlineisen ratio; ds, Anderson-Griineisen parameter; Hiyok, enthalpy of formation from oxides at

1000 K and 1 bar. Observed ranges (raw) and best-fit values (adj.) are given for bulk moduli pressure deriva-

tives. [See text for references.]
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TABLE 2. Low Pressure Mineralogy (Vol%) of Model Compositions

Phase || Olivine | Peridotite | Pyrolitelll | ‘‘Piclogite’’ | Eclogite
Olv 100 74 54 30

Opx 14 25 13

Cpx 3 9 35 57
Gt 9 12 22 43

Phases are olivine (olv), orthopyroxene (opx), clinopyroxene (cpx), and garnet (gt). [See text for references)

27
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