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A study is conducted of the asymptotic behavior of the gravity modes of an incompressible spherical oceanic layer,
surrounding & rigid Earth, as its radius goes (o infinity. The flat-layered Earth dispersion relation ¢ =y/gh for the phase
velocity of the tsunami wave is derived, and the existence of only one branch of tsunami modes is proved, a result
fundamental for the use of mode theory in marigram synthesis, Studied further are the influence of such parameters as
finite incompressibility in the ocean. and finite rigidity of the ocean floor, on the digpersion of tsunami modes, both
theoretically and numericaily for a number of modeis. It is concluded that for all physically acceptable models of both
the ocean and its floor, tsunami dispersion is not significantly affected by either. This includes in particular the case of a
sedimentary layer, which is found to have no effect on tsunami propagation. The maximum {(and extremely small}
rigidity allowed in the fluid before the tsunami modes disappear is alse derived,

1. introduction

Early inroads into tsunami theory were made
using the model of a flat mcompressible ocean
over a rigid balf-space, the tsunamigenic source
being described as a sudden movement of a por-
tion of the ocean floor, This model, which uses the
long-wavelength limit of the theory of gravity
waves in liquids (Ben-Menahem and Singh, 1981,
pp. 776-796), correctly predicts observed tsunami
dispersion, ang successfully explains the very large
{and devastating) directivity effects due to the
disproportion between tsunami phase velocities
and earthquake rupture velocities (Ben-Menahem
and Rosenman, 1972). However, in this approach,
the amplitude of the tsunami in relation to earth-
gquake size is difficult to assess, since il reguires a
full history of the strong meotion of the ocean
floor,

Following Abe’s (1979) remark that the ampl-
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tude of the tsunami is governed by the long-period
seismic moment of the source, a major break-
through came from Ward’s {1980) theory describ-
ing tsunamis as a particular branch of the
spheroidal modes of an ocean-covered spherical
Earth. In particular, Ward was able to directly
compute sunami excitation as a function of earth-
quake depth and for two fundamental source
geometries, There remains 1o be proved, however,
the expected result that the flat-layered solution
can be obtained asymptotically from the normal
maode solution; in this paper, this result is derived,
and the existence of only owme tsunami branch (a
result tacitly assumed for the successful computa-
tion of synthetic marigrams) is proved. The m-
fluence of real-Earth parameters, such as finite
compressibility of seawater and finite rigidity of
the ocean floor, on those results are then examined
thepretically. Although in all physically meaning-
ful situations, this influence is va.ry small if not
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physical insight into the nature of the phenomena
involved in the coupling of tsunami energy with
elastic med:a.

2. Asymptotic behavior: the flat-layered Earth prob-
lem

In this paper, the normal modes of a sphericaily
symmetric Earth of radius @. whese shallowest
layer is an ocean of depth / and density p, are
considered. The notation of Saito {(1967) is used,
which is also that of Ben-Menahem and Singh
(1981). In the ocean, the rigidity p vanishes, and
with it, the shear traction y,. The horizontal dis-
placement, y;, although non-zero, becomes a spuri-
ous variable, satisfying identically

; 2
w=lgn = /e ys)/er (1)
and the differential system governing the modal
solution becomes
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as derived readily from Saito (1967). Here L7 =
[(/+ 1y and A is Lamé&’s constant for the ocean.
Under the further assumption of an incompressi-
ble ocean, 1/A=0 can be put in this system,
Substituiing the first and third line into the fourth
dy,  2dy L7

drz"'rr—a";f rz)’ﬁ—o {3)

which merely expresses the fact that in the absence
of compression in the liquid the gravity potential
satisfies Laplace’s equation. Similarly, after some

calculation it is found that y, satislies
¥

—t = T 2 P -

02y ar (L Z)r2 0 (4)
The solution te a gravity mode of the oceanic layer
is therefore of the form

= AT B2
vs=Crli+Dr 17 (5)
where A, B, C and D are constants.

These solutions generalize Takeuchi and Saito’s
{1972} third type of solution (their eq. 100, p. 244)
to the case where the medium, not extending to
the center of the sphere, can entertain waves in-
creasing with r— 0. The dispersion relation w =
w(!} is obtained from the boundary conditions: in

order to go asvmpiotically to the case of the flat
ocean, rigid bottom, tsunami model, impose

¥y =y =0
Yo =y (4 Dy /r=0

From the equations in system (2)

for r=a—h
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is easily derived. It is then straightforward to
substitute (5) and (7) into (6) and equate to zerc
the determinant of a system vielding A, B, C and
D. Under the long wavelength assumption (1<

a/h)

2
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wherex=h/a<1  (8)

or in more usual form, involving the phase veloc-



ity, ¢ = gh. The solution is then written as

»=Y(1—£/x)

y2 = = Yogd/x

vy =Y /xL?

vs = YdmpGa(x —§) .

where Y is a constant, £ =(a—r)/a, and keeping
only terms of first order in x, £ and 1//. These
expressions, which will be useful in the next sec-
tions, are in agreement with Ward’s {1980) results.
Note in particular that the horizontal displacement
ly; 1s constant throughout the oceanic layer, and
much larger than the vertical displacement y,.

Although the asymptotic equivalence between
the two models was to be expected, it had never
been given in the lLiterature, and it was important
to derive, since it provides the basis for the use of
normal mode in tsunami studies. In particular, it is
clear that under the above conditions, there exists
only one branch of tsunami modes, since: (1) the
differential equations satisfied by vy, and y; do not
mvolve frequency; (2) only », depends on w(see
eq. 7) and (3) this dependence is linear in w?,
making the dispersion determinant itsell linear in
w?, which results in only one positive frequency
root for each /. Thus, the existence of only one
branch of tsunami modes is not an artifact of the
asymptotic assumption -+ oo, It is clear, from
eqgs. 5-7 that it holds (although with a more com-
plex dispersion law) even for an oceanic mass of
depth comparable to a (until of course gravita-
tional instability takes place). This is a completely
different case from that of standard Ravieigh
modes, in which the existence of the overtones
stems from the transcendental character of the
dispersion equation. In the Rayleigh problem, the
disappearance of overtone solutions of a homoge-
neous Earth as a — oo for fixed wavenumber k, is
due to their eigenfunction remaining [inite at
depths of the order of a finite fraction of the
Earth's radius, itself going to infinity: such sclu-
tions cannot be allowed in the flat-fayered Earth
problem. On the other hand, in the tsunami preb-
fem, and even for finite oceanic depths, there is
only one branch of solutions.

Thus, in this section, it is proved that the only
modes of an incompressible oceanic layer make up

one branch of tsunami modes, which under the
condition of the long wavelength limit ([x<1)
propagate at a phase velocity ¢ = /gh . It remains
to be proved that this result is not sigaificantly
affected by either a small value of the compressi-
bility 1 /A (such as in seawater) or by finite rigidity
of the ocean floor,

3. Effect of seawater compressibility

In this section, the assumption of mcompressi-
bility of the oceanic layer is relaxed and the effect
it has on the existence and dispersion of the
tsunami mode is investigated. Simiarly, the fluid-
ity of the ocean is later refaxed and we investigate
to what extent a solid of very low rigidity can
entertain tsunami modes, which are defined as
modes in which the potential energy is mostly
gravitational. These problems are investigated both
theoretically and numerically, using the case of a
4-km deep oceanic layer of density lg cm™3,
overlaying a rigid homogeneous Earth (it 1s ap-
proximated as a Poisson sold of 107 km s !
P-velocity), with a density of 5.52g cm ™7, provid-
ing an adequate value of g in the water layer. An
angular order of /= 200 is used, corresponding to
a period of approximately 1000s for the flat-
layered Earth incompressible model.

21, Effect of finite bulk modulus

In this section, the term 1 /X is reintroduced in
system (2), while keeping the fluidity of the medium
(= 0). The long-wavelength approximation fx < 1
is also kept. Furthermore, the variable y, is re-
placed by 3, =y, /A, which represents the dilata-
tion u,, in the seawater. Equation 2 can be rewrit-
ten with the variables y,, y;, »; and y,. using the
matrix
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The resulting different:al system can be consid-
ered as expressing the coupling of the [ollowing
oscillators:

A tsunami mode, corresponding to 1,/A = 0 and
satisfying eq. 3. In this mode y, = 0 but y; remains
finite.

Seismic modes, corresponding to =10, g=0
and satisfying

QﬁT}%:O (11}

The latter, in which y; = y, = 0, represent, of course,
seismic energy trapped in the water layer, with
only litidle dependence on the horizontal coordi-
nate {(Ix<«1). In the absence of coupling, their
cigenfrequencies are governed by the depth to
ocean floor, and are of the order of «=pa/ax
{p= 1) for the fundamental and its overtones
{niote that this result is independent of /). For all
such modes, one has a phase velocity much larger
than the P-wave velocity «, and eq. 11 degenerates
to d?y,/dr? + (w?/a’)y, =0, all other terms be-
coming negligible.

In the presence of coupling, egs. 3 and 11 are
replaced by
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the boundary conditions remaining unchanged.

Because r varies very little {about 1/1060) in
the oceanic layer, the effect of the new y, terms in
the 1h.s. of eq. 13 can be viewed as only slightly
modifying the apparent value of /in eq. 11. The
eigensolutions to the Lh.s. of eq. 13, governed by
the unchanged boundary conditions, and indepen-
dent of /, are practically unchanged, and therefore
remain outside the range of tsunamis (¢» a; no
significant gravitational energy).

When dealing with the r.h.s. of egs. 12 and 13,
it is possible to compute a dimensionless estimate
of the intensity of coupling from an examination
of the orders of magnitude of the terms involved.
The coupling (say ¢) can be described by the
square root of the product of the dominant r.h.s.
coefficients, divided by typical eigenvalues of the
L.h.s. operators. In the present case, it is found that
the dominant r.h.s. term in eq. 13 15 the last term,
of the order of

(2L%/re® {1 — 3g/4nGpr)y, /Aa’x
= (9L% /re* )pys /Aa‘x

In the frequency range of tsunamis, typical eigen-
values of the Lh.s. operators are 1 /a%x?, leading to

e? =36mGgp°Llax® /ety €<3% (14)

for seawater and for all w>0.03 rad s~' and all
/> 100. Since the anticipated coupling is so small,
one is justified in using linear perturbation theory
to predict that the tsunami mode will see its eigen-
function unchanged at first order in 1/A and its
eigenfrequency shifted by an amount readily com-
puted from the variational formula (Takeuchi and
Saito, 1972, eq. 201)

ry, “dr
s ) (15)
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where the integrals can be conveniently limited to
the oceanic layer. Using formulae 9
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Similarly, the seismic modes (fundamental and
overtones) would take up a little gravitational en-
ergy, and see their frequencies slightly affected.
The most important result is that as long as linear
perturbation theory can be applied, only one
tsunami branch occurs, i.e. one tsunami mode for
each [.

If coupling is strong, in particular when a be-
comes comparable to the unperturbed ¢, it ceases
to be linear, and the behavior of the solution
cannot be predicted simpiy. For all practical appli-
cations, tsunamis are considered only in seawater,
where the P-wave velocity is fixed to about 1.5 km
s, so that strong coupling would occur only if
the unperturbed tsunami phase velocity reached
that value. That would require a depth of the order
of 250 km, which is totally unrealistic.

These theoretical results are checked in Tablel
against tsunami eigenfrequencies for /= 200, com-
puted using a spherical model with a 4-km deep
oceanic laver over a rigid solid Earth. In order to

TABLE 1

investigate the asymptotic influence of small 1 /X
several hypothetic values of « in the water are
considered, from 0.1 to 100 km s™'. As long as a
rermains larger than the unperturbed phase velocity
(about 200 m s~ ), linear perturbation theory gives
excellent results, as shown by columns 2, 4 and 6
of Table 1. In particular, for seawater (1.5 km s™ 1),
the frequency shift is only about 0.3%, a figure
equal to one-half the proportion of elastic energy
in the system. The linearity breaks down around
o= 200m s, with the potential energy becoming
strongly elastic, and the tsunami mode disappear-
ing.

In conclusion, all realistic models of seawater
and oceanic depths predict one and only one
tsunami branch, obeving the dispersion relation

c? :gh(i ~ gh/3a”)
3.2. Effecr of small rigidity

The purpose of this section s to investigate to
what extent rigidity in the ocean would prevent
propagation of a tsunami mode. Although a model]
involving rigidity in the ocean i clearly unrealistic,
it will help in attacking the problem of the in-

Influence of ocean compressibility on tsunami dispersion (rigid ocean floor; depth of ccean column =4 km)

P-wave velocity

Period of tsunam: mode for

Potential energy of mode

{ =200
kms™! a?/3ct Gravitational Elastic
Seconds - 28w w*

1006 1.30E-6 1010.68 — 1.0800 1.28E-6
30 1.44E-5 1010.69 LE-5 10000 143E-5
10 1.30E-4 1010.75 1.39E-4 0,9999 1.28E-4

5 5.20E-4 1010.94 S5.15E-4 0.9993 3.13E-4
3 1.45E-3 1011.40 14383 0.9986 143E-3
2 3.25E-3 1012.30 32183 0.9968 321E-3
1.5 %+ S.78E-3 1013.57 $.72E-3 0.9943 5.72E-3
1.0 1.30E-2 1017.2% 1.29E-2 0.9871 1.29E-2
0.7 2.65E-2 1024.1% 2.66E-2 0.9734 267E-2
0.5 5.20E-2 1037.38 S28E-2 0.9470 5.30E-2
6.2 0.33 1205.28 (.385 0.6210 8.379
G.1 No tsunami solution

* Reference “incompressible” case 1s taken as 1010.68 s.

** Seawater.



fluence of sedimentary layers and other non-rigid
ocean bottom properties on tsunami propagation,
by giving an insight into the ability of the tsunami
mode to penetrate such layers.

Once a small p(p < A) is mserted into the prob-
fem, we must revert to the full 6 > 6 system de-
scribed, for example, by Ben-Menahem and Singh

nitude study of the various new terms suggests
that the perturbation they introduce is of the order
of %/¢”, comparable to the ratio of the shear
elastic potential energy to the total energy of the
system. However, the variational formalism used
in the previous section cannot be used here, be-
cause the boundary conditions have been changed
drastically by relaxing the fluidity of the ocean.
Most significantly, y, must now be continuous {in
practice, zero) at the bottom of the ocean. Since
the structure of the tsunami wave rested on very
large horizontal flow in the oceanic layer (see eq.
$), it is anticipated that the breakdown of the
tsunami mode will occur for velocities 8 much

TABLE 1

smaller than in the case of the P-wave velocities of
section 3.1. This is clearly confirmed by the data
in Table II which present the results of dispersion
caleulations (/= 200) for various values of a small
rigidity, added to the seawater model of Tablel
{(a=15 km s™'). Even for an extremely smali
rigidity (8:=0.03 km s~! Poisson ratic »=
0.4998), the tsunami mode 15 destroyved. The sys-
tematic investigation of the influence of even
smaller values of 8 shows that tsunami modes can
exist for shear velocities of the order of §-10m
s 7', although these solutions are strongly per-
turbed, and carry only about 60% gravitational
energy. As B is diminished, the tsunami period
becomes close to the unperturbed solution. How-
ever, when 8 = 0.006 km s~ ', strong coupling takes
place, since the seismic shear modes of the ocean
column {or their overtones) take a frequency com-
parable to 1000 s. This results in the development
of two strongly hybridized solutions, whose fre-
gquencies vary irregularly with f. The physical na-
ture of this phenomenon is similar to coupling

influence of rigidity in ccean on tsunami modes (rigid ocean floor; depth of ocean column =4 km)

S-wave velocity Period of modes for Potential energy of mode Type of
w200 (s} solution *
ms Poisson ratio Gravitational Elastic
Tsunamti solution for the fluid case
5} G.5 1013.57 0.5943 0.6057 T
Tsunam: solution strongly coupled and hybridized to seismic modes
1 1008.93 0.6393 0.3605 T
1080.90 0.1661 0.8339 S
3 964.10 0.5316 (1.4684 T
1148.92 0.3003 0.69G7 s
5 923.99 0.4961 0.5039 H
1235.59 0.3415 0.6585 S
6 1119.G62 0.5475 0.4525 T
825.46 0.2687 07314 S
Tsunami sohution
8§ 1006.09 0.6547 0.3453 T
10 0.5000 929.63 0.6142 0.3858 T
No tsunami solution
20 0.4999 647.71 G.3222 0.6778 5
30 0.4998 477.30 G.1767 0.8233 S

* T, tsunami mode {predominantly gravitational energy); S, seismic mode (predominantly elastic energy); H, fully hybridized mode.



between spheroidal modes belonging to different
families in the high-phase velocity part of the
dispersion plane, as studied by Okal (1978).

The fact that such a small rigidity is enough to
inhibit development of a tsunami mede is puzzling
and warrants some physical discussion. A tsunami
mode consists of energy oscillating between kinetic
and gravitational potential forms. This is possible
only if the displacement field involves no substan-
tial elastic potential energy. In an oceanic column,
vertical displacement alone with not do, since it
has to vanish (or be extremely small) on the ocean
floor, and thus involve a strong vertical strain e, .
Hence the role played by the prominent horizontal
component of the displacement which, in the regu-
lar tsunami wave, reaches to the bottom of the
ocean with its amplitude practically undisturbed
{see eq. 9). This horizontal flow provides the re-
servoir of kinetic energy (necessary for the oscil-
lation with the gravitational potential energy), to
which the vertical displacement contributes very
little, As soon as rigidity is allowed in the ocean, a
welded boundary condition is imposed on the sea
floor, and since the tsunami wave can hardly
penetrate the solid Earth, this in practice con-
strains the horizontal flow to vanish on the ocean
floor, and leads to a substantial shear strain com-
ponent e, (the contribution to ¢, of the vertical
motion is negligible in the long-wavelength ap-
proximation /[x < 1), This necessary shear strain
forces a tapping of the kinetic energy for shear
potential energy, and the tsunami mode can only
subsist if the ratio of the shear potential energy to
the kinetic energy is kept small, and most of the
kinetic energy remains available for gravitational
potential energy. Assuming a value of e, mdepen-
dent of z (actually, a less favorable energy pattern
will be required since e, must vanish at the surface
of the ocean), this ratio is found to be

2 2
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which is of the order of 3(8/clx)*.

Keeping a significant tsunami in the water layer
(say 75% of the potential energy gravitational)
clearly requires shear velocities in the range of
0ms™

As models involving such low shear velocities
are totally unrealistic, this section is simply con-
cluded by asserting that tsumami modes cannot
exist in any solid worthy of this name, even with a
Poisson ratio as high as 0.499.

4. Influence of finite rigidity of the ocean floor

In this section, we revert to a fluid ocean (and
the theoretical mvestigations to an incompressible
one), and the influence on tsunami dispersion of
finite rigidity of the ocean floor is studied. In
particular, the possibility that transitional sedi-
mentary layers might play the role of impedance
acdaptators is explored.

For this purpose, refer back to system (2}, and
replace the boundary condition y, =0 for r=
a(t — x) with », =y, Z, where Z is the mechanical
impedance of the substratum at frequency w. Also,
since it is known from section 3 that a tsunami
wave cannot penetrate a solid, the perturbation in
the gravitational potential in the ocean floor is
expected to be merely gy,. Therefore replace the
boundary condition y; = 0 by y; = gy,.

Treat the impedance function Z{w) as a known
function, which can be computed, for example,
through the use of a Haskell propagator in the
solid ocean floor. The solution to the tsunami
dispersion problem can again be sought in ferms
of the constants A, B, C and D of eq. 5; it now
requires vanishing of the determinant

(18)



Negiecting terms of second orderinx =1 —r/a,
the characteristic equation can be reduced to

IE I L (19)
L7 L

where the non-dimensional parameter

T=2/0g (20)

is introduced, which is the ratio of the impedances
of the solid floor and of the incompressible oc-
eanic layer, the pressure in the ocean being due to
the gravitational potential. The case of a rngid
ocean floor corresponds to T=ac. For T not
infinitesimally small, and x <1, eq. 19 has two
roots

w'=gxL’/a and w'=gT/ax (21}

The first solution is the tsunami mode, whose
dispersion Is found to be independent of T, and
thus of the material properties of the ocean floor,
at first order in x. As for the second solution, it
must be considered an implicit equation for w,
involving the known function Z{«). Although in
principle Z{w) shouid be computed in the spheri-
cal Earth model. 1t can be approximated with the
model of a homogeneous half-space substratum.
In the case of a Poisson-solid of rigidity . it i
easily shown that

(2= %) = 4/(1 = x?)(1 = «*/3)

Ziw)=pk
(22)

TABLE [

where k& is the horizonial wavenumber and x =
o /Bk. Since only solutions decaying with depth in
the substratum are allowed, one must have k< 1.
The second solution in {21} can be rewritten

K*x = Z{w) /uk (23)

and since x is bounded and /x< 1, it requires
Z =0, which 1s, of course, the Rayleigh mode:
= 0.919.

In the case of layering, or of a solid with a
different Poisson ratio, the reasoning would be
exactly similar, and the second solution would
correspond to the Rayleigh modes, including any
overtones.

Thus, it is shown that a finite ocean floor
rigidity does not, at first order in x, perturk the
dispersion of the tsunami solution, and keeps the
characteristics of the Rayleigh modes. These re-
sults are confirmed in Table IIl, which compiles
data obtained for various solid substrata. How-
ever, if the mmpedance of the substratum is de-
creased to give T small values comparable to 1,
additional terms in eq. 21, of order {?x?/T, may
become detectable, if not fully significant. In par-
ticular, for a reasonable crustal velecity value (a —
6 km s '), the tsunami frequency has shifted
about 2s or 0.2%. Once again, only one tsunami
branch is present, and the only assumption on the
ocean floor is that it cannot be penetrated by a
tsunami-type mode, in other words, and according
to section 3.2, that it is solid. This can be best
iHlustrated if these results are now used to investi-

Influence of ocean floor rigidity on tsunami dispersion (depth of seawater column=4 km; ocean floor is 2 Poisson solid)

Pwave T at 1014 s Period of tsunami mode for Potential energy of mode
veloctty §==200
(km s~y Gravitational Elastic
Seconds - 8w /w*
LOE+7 LE+14 101357 — 09943 572E-3
160 15 435 1013.57 ] 0.9943 ST2E-3
30 1279 1014.16 582F-4 0.9940 5.99E-3
10 142.0 1014.71 1.13E-3 0.9919 8.00E-3
5 35.41 1016.5% 2.98E-3 (.9848 L52E-2
3 12.66 1021.09 7.42E-3 3.9674 326E-2
1.5 307 1044.34 3.04E-2 G.8680 0.132¢

* Reference “nigid floor™ case is taken as 1013.57 s



TABLE IV

Influence of Poisson-solid sedimentary layer on tsunami dispersion (depth of ccean column=4 km} *

P-wave velocity in sediments Period of tsunami mode Potential energy of mode
for £ =200 {s)

km s} Poisson ralio Gravitational Elastic
6 0.25 101542 0.9877 1.23E-2
4 0.25 1015.86 0.9876 1.24E-2
2.5 0.25 1G15.95 0.9874 1.26E-2
2.0 0.25 1616.03 (.9872 1.28E-2
1.5 0.25 101621 (9869 1.31E-2
1.0 0.25 1016.71 (.9859 141E-2

* Sediments overlay Poisson-solid crust with 6§ km 57! P-wave velocity. Sediments are taken as Poisson solid of variable P-wave
velocity.

TABLE Y

Influence of rigidity of sedimentary layer on tsunami dispersion (depth of ocean columam=4 km) *

Reference values in the absence of sediments

Depth of acean Period of tsunami mode Potential energy of mode
km) for { =200 (s)
sravitational Elastic
1015.82 0.9877 0.130E-1
5 990.00 0.9841 0.139E-1

Models ineluding 1-km sedimentary layer

S-wave velocity in sediments Period of tsunami mode Potential energy of mode
for /=200 {s)
Poisson ratio Giravitational Elastic

km !

Tsunami regime in 4-km deep ocean

0.866 0.25 1016.21 0.9869 13182
4.4 0.462 1016.18 0.987G L30E-2
0.2 0.491 101619 0.9870 1.30E-2
0.1 0.498 1016.21 0.9870 1,30E-2
.01 0.500 1019.38 0.9801 1.99E-2
0.065 0,500 1037.76 0.9123 8.77E-2
Hybridized regime
0.004 0.500 107355 0.7217 (,2783
879.25 04016 §.5990
0.0035 0.500 1130.35 0.4955 .5045
935.0% 0.6602 0.3398
Tsunami regime in 5-km deep ocean
¢.003 0.500 966.62 £.8535 0.1465
0.002 0.500 990.33 0.9534 4.66F-2
¢.001 0.500 980,21 0,9470 3.30E-2

* Sediments overlay Poisson-solid crust with 6 km s ™" P-wave velocity, Powave velocity of sediments kept at 1.5 km s L
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gate the effect, 1f any, of a sedimentary layer on
the dispersion of tsunami modes. As long as the
rigidity of the sediments is sufficient to prevent the
development of a tsunami mode inside them (that
this is the case for £ 0.01 km s ! has been seen},
the sediments and the subsiratum make up the
solid in the above discussion, and although the
expression for Z{w) is more complex, the same
reasoning holds. Therefore, for all physically
acceptable models, sediments are expected to play
no significant role in the dispersion of tsunami
modes. In particular, they cannot have the cou-
pling effect of impedance adaptators, identified
for short-period Rayleigh waves by Okal and
Talandier (1981). Tables IV and V are a check of
these results against real computations,

In Table IV, the sediments are constrained to
being Poisson solids, and their P-wave velocity
varies from thai of the crust (6 km s7 ') to that of
the oceanic layer (1.5 km s ). The total shift of
frequency for tsunami modes computed in these
models is less than 0.1%. On the other hand, in
Table V, we examine the influence on the disper-
sion of a variation in the Poisson ratio of the
sediments, having fixed their P-wave velodity to
1.5 km s™'. Three regimes are clearly identified:
for #>>0.01 km s, and as predicted in section
3.2, the tsunami cannot penetrate the sedimentary
fayer, and the solution essentially remains that for
the 4-km deep ocean. For values of #=<0.003 km
s71, it is possible to develop a tsunami wave in the
sedimentary material, and therefore the tsunamu
mode “jumps” the sediments and becomes essen-
tially the solution for a 5-kimn deep occean. (No
coupling with seismic modes is involved since the
thickness of the shear layer has become too small.)
In between, and for a limited range of values of B,
the two modes are coupled with their eigenfunc-
tions strongly hybridized.

Again, and for all physically acceptable sedi-
mentary models, no significant effects on the dis-
persion can take place,

5, Conclusion

The main results obtained in this paper can be
listed as follows:

{1) The flat-layered ocean tsunami solution and
its dispersion as an asymptotic limit of the normal
modes of a spherical oceanic shell are derived.

(2) 1t is proved that only one branch of tsunami
modes exists, the absence of overtones not being
an artifact of the Earth-flattening approximation.

(3) The frequency shift due to finite incom-
pressibility in the oceanic layer 8w/w = —c’6 /a?
is derived.

{4) It is proved that even a minute rigidity is
sufficient to inhibit the development of a
tsunami-type gravity mode in an oceanic layer.

{5y It is shown that finite rigidity of the ocean
floor has no effect on tsunami dispersion. In par-
ticular, the dispersion is not affected by sedimen-
tary layers, however soft.

Although the mode-wave equivalence was to be
expected, and some of the quantitative bounds
derived in the other results are extremely small,
and do not put any constrainis on real-Earth
situations, at least one fundamental point has been
proved in the paper: that under all physically
acceptable conditions for both the seawater col-
uma and the ocean floor, only one branch of
tsunami modes can exist. This justifies the use of
normal mode synthetics in the reconstruction of
marigrams.

There remains, however, the problem of the
possible influence of a sedimentary layer on the
excitation of a tsunami mode, whether or not the
seismic source penetrates it. Because a softer layer
may provide for a different (but still highly in-
hibited) penetration of the eigenfunction inside the
sofid Earth, this influence may be relatively more
mnportant than that on the cigenfrequency. Such a
mechanism has been suggested by Fukao (1979),
to explain the generation of a stronger-than-ex-
pected tsunami following the 1975 Kuriles earth-
quake, in an area where a substantial sedimentary
wedge is present at the collision zone between the
two plates. This investigation will be the subject of
a separate paper.
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