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ONTHE PROBLEM OF THE CONVERGENCE OF THE EIKONAL EXPANSION
FOR SYNTHETIC SEISMOGRAMS

By EmILE OKAL AND PIERRE MECHLER

ABSTRACT

En this paper, we discoss the convergence of the cikonal method, when applied
te computing synthetic seismograms, by means of a comparison with the exact
solution, computed through the Cagnizrd method. We prove that the eikonat
method may yield a divergent series, for sufficiently large 1— 1.

INTRODUCTION AND STATEMENT OF THE PROBLEM
The generalized ray theory in a broader sense, which is known as the eikonal method
in French literature, is a most powerful method for computing synthetic seismograms
(Rabich and Alekseev, 1958, Hron, 1968
Itis based upon the following set of fundamental hypotheses:
1. The seismic displacement is expressed as an expansion

Ulx,p,z;t) = kiofk(.t—r(x,y,z}) LW 0,20 (hH

2. Functions W, and 7 are independent of time 7 and of the excitation function f,
as well, provided the symmetry of the seismic source is kept,
3. Fuactions f, are subseqguent primitives of the excitation function f,

fk’ :.flic~i'

On the basis of these hypotheses, which enable one to separate propagation (W,7)
and excitation (f)), one may derive 2 computation of the W 's: Inside a continuous

medium, one solves partial derivative equations, and at a surface of discontinuity, one .

may use the Zoppritz coefficients, of which a general algebraic expression may be
derived (Hron, 1968; Okal, 1972a).

However, the various W 'y in expression (1) are yielded in a recurrent way; one has a
hard time computing W, or W, and it is impossible to give a formal algebraic expression
for W,

Therefore, the convergence of the series over & in (1) is difficult to study directly.

Babich {1961) proved that there always is some instant #— 1 small enough to secure the

convergence. Pod yapol'skii (1956) gave a general expression for a time f—1 when it
still converges. In the present paper, we shall prove that, under certain circumstances,
there always exists a time ¢— 7 large enough when the series diverges. In order to be able
to discuss this convergence, we will take a very particular situation, when the exact
solution for U(x,y.z;t)can be computed by the Cagniard method {(Cagniard, 1939).

COMPUTATION BY THE CAGNIARD METHOD

Let us assume (see Figure 1) a semi-infinite medium, under a vacuum. Let us take a
spherical source at depth & with an excitation function £, defined as

LE =1 i 0<i<T;
otherwise L& =0
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Fig, 1, Particular situation assumed to compare the two methods.

This particular choice of the excitation function leads to the following theorem:

The expansion {1} is, if it exists, unique, and is obtained by expanding Cagniard’s
exact sofution into powers of the variable £ —t{x,y,z).

Let-us now pay attention to the horizontal displacement U, at point M located on the
interfuce, Cagniard's method yields

U, = Af,(t—Rlx)+ B[S, (v)f (1 —v) dv.
Here, 4 and B are two constants with respect to t and the “propagation factor” 5,(v)
for a propagation time v is
. [ bout du
S,{v) = TFET PTAVIETEE
D{u) {u P+ {v—ah) }

(2)

where
a= (@' +1ay"; b= (u+ 1B
Dy = [ + 125 —abu?,

o-and § being the P-wave and S-wave velocities.

The integral in {2} is taken along a path of integration which is described in Figure 2
and which is composed of’:

i. A greatloop of large radius {(R),

2. Two small loops around the peles of D: (P.P'), and

3. A coniour surrounding the cut provided from —//f to +i/f in order to take into
account the various determinations of the square roots in @ and &. Let this contour be E.

Dnscussion oF THE CONVERGENCE

The first term in U, is a zeroth order term of the series and it can have no influence on
its convergence. Then, the remaining integral may be rewritten, by setting & = t— R/u

U, (xy.2,8) = [§/,(E—=mS,(n+ Rjz) dy
= {850+ Ria)-dy.

The convergence of U’

p?

considered as a function of #.

expanded on powers of £, will be identical to that of &,
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Fic. 2. Path of integration in the plane of the complex variable .

This enables us to study only the three integrals: 8%, $¥%" and 5%

is a constant, which cannot change the convergence of 5.
2. Then, the Rayleigh coniribution may be writfen as

S = O Imi[r? — p* +cos? [+2ir cos Lip*— 1Y V2

Here, r = av/R is a dimensionless variable and € is a constant with respect to time.
v = gffi is the ratio of the P- and S-wave velocities. The quantity between brackets is
expandable into series of powers of x = r~—1, its radius of convergence being ¥ =
y—sin f, where u is the ratio of the P-wave and Rayleigh-wave velocities: g == 1.883 .. ..
It may easily be proved (Okal, 1972a) that S;’P' has the same radius of convergence.

3. Then let us pay attention to the last term: §,%. A change of variable in the integral
(2) teads to the {ollowing expresston for S,)E (Cagniard, 1939; Okal, 1972a)

: pi
SpE = "
P n
(vi-1%F j.d;(l +/~Lz)_(l+&2mv2/2)2(v2_1_)12)112
{ T ATV 2 1207 — 1 A (2R = (2 + 1)p?) 7
v 1)'}

This quantity may be proved to be expandable into a power series of x = #~ 1. This
comes from the identity

(oo +iA)? — (A7 +Dp* = RHx+s) (x+5,),
where the roots s,, s, are obtained as
5y, 8y = —L—(iAR)RLGF+ 1) piR,

I m and M denote the minimum and maximum values of the modulus of 5; and 5, when
4 varies on the integration segment, then one proves (Okal, 1972a) that
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{Le50) (x50} 732 = S, -7,
with

241
< fn—fr C(2Mm,
-

Cn

and that mi#0.

Therefore, as the convergence is proved to be uniform with respect to 4, S, is expand-
able into a power series of x with a radius of convergence not smailler than m*/244.
Then, as D does not go to zero while A varies on the integration segment, it is impossible
for 5, to have as its own pole the pole of SP*’ of smallest modulus, which was respon-
sible for the radius of convergence of 5% (Okal, 1972a).

Accordingly, the radius of convergence of the sum

— R PP’ E
S, =35,+857 +5,
cannot be greater than that of S77°, namely ¥ = g—sin /I,

Therefore, if t > 7, with

R .
1y = - (l4+pu—sinl}),
o

the series {1} diverges.
(GENERALIZATION

These results may be generalized as foliows
[. if one considers a time r> 7T and if T< 1, then the expansion

is to be replaced by

which obviously has the same convergence.

2. If one deals with any function f, which remains larger than a rectangular function
g, {see Figure 3), general theorems on series prove that, outside the radius of the con-
vergence of the series built on the g’s, that built on the /7s diverges as well.

A fo

FiG, 3. Example of functions f, and g,.
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3. The study of the vertical component U, of the seismic displacement leads to the
same radius of convergence as that of U,,.

Discussion

The results obtained in this paper are very similar to those derived by Padyapol'skii
(1966). The study by Podvapol’skii stated that, inside a certain region in the r— 1 space,
the expansion is convergent. He pointed out that, outside this region, the series may still
be convergent, owing to special geometry of the problem, leading to annihilation of
singularities. ' '

Although the material in the present paper is certainly derivable from Podyapol'skii's
results, we obtain it from Cagniard’s method by a very simple way. Furthermore, we
prove that in the chosen particular case, and under very lttle stringent hypothesis on
the excitation function, the series (1} is actually divergent when r>1,. Therefore, the
eikonal method appears as a powerful method to investigate wave-front intensities; it
should not be used to compute a seismogram in its further steps, and especially its coda.

Direct comparisons of computer-achieved calculations by both this method and
Cagniard’s agree with this last result.
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