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This paper shows that five different families of spheroidal modes can
be isolated, namely: 1) Inner Core and Stoneley modes (K" modes); 2)
b7 (vertical) modes, with mainly vertical displacement; 3) **C” (Colati-
tudinal) modes, with mainly horizoatal displacernent; 4) ‘R’ {Rayleigh)
modes, in which the horizontal and vertical displacements are totaily cou-
pled, and 5) “H” (Hybrid) modes, with intermediate coupling. ¥ and ¢
modes occur at high phase velocities, R modes at low phase velocities, aad
H modes at intermediate ones. Each of the families of modes has distinctly
different properties, including group velocity, {2, and excitation functions.

Except for H modes, these families are arranged in “pseudo-overtone”’
branches, along which physical properties vary smoothly, A theoretical
description of the properties of ¥V, C and K modes is given, using the simpli-
fied model of a homogeneous, non-gravitating Earth. Two important ob-
servations are explained, using this model: i) The solution for C modes at
low values of { are identical to the ones for corresponding T" (Torsional)
modes, and have, therefore, the same eigenperiods are relative excitation
functions, and ii) the radial modes 5, are the /=0 members of the ¥ family,
and their apparent scarcity results simply because only that family has
modes with /=0, Fuarthermore, the group velecity of K, C, V and R modes
is shown (o be consistent with the physical concept of dispersion along a
pseudo-overtene branch. An interpretation of the existence of the different
families in terms of an increase in mode-coupling with angular order is
presented.

A formal classification of the spheroidal modes into 5 families is made,
and a new nomenclature is proposed, which is closely related to their physi-
cal properties,

1. Inrroduciion

The purpose of this paper is to disentangle the physical properties of the
spheroidal modes and to propose a classification and possible new nomen-
clature for them. In the conventional nomenclature, modes of similar an-
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gular order number [ are sorted by increasing frequencies. The physical prop-
erties of the modes (group velocity U, attenuation factor O, particle motion
at the surface, excitation functions) can vary dramatically with small changes
in either / or the overtone number n. It is shown in this paper that most of
the spheroidal modes can be classified into several families offering regular,
although different, trends in their physical properties. Specifically, one can
isolate the Inner Core and Stoneley modes; then, among the remaining modes,
for low 1, or equivalently, at high phase velocities, there are two completely
different sets of spheroidal modes. The first is a family of highly attenuated
modes, for which the group velocity is slow (usually <5 km/s), and the main
component of the displacement colatitudinal. The eigenfunctions of these
modes (and therefore, their periods, group velocities, @’s and excitation
functions) are strikingly similar to those of torsional modes of the same an-
gular order. The second family consists of modes with higher Q’s, whose
group velocities are higher (usually>10 km/s), for which the displacement
is mainly vertical, and whose physical properties are continuous with those
of the so-called “radial” modes ,S,. At high [/ (lower phase velocities), total
coupling occurs between the vertical and colatitudinal modes, leading to a
single family, whose physical properties are extremely regular, and can di-
rectly be compared to Rayleigh waves. At intermediate [, coupling occurs
irregularly and it is not possible to define any strong trend in the physical
properties.

The first section of this paper describes the irregular variations in the
modes’ properties with small variations of either » or [, when the conven-
tional nomenclature is used. The empirical analysis of a set of computed
data introduces the idea of several families of spheroidal modes. In the second
section, we adapt the results of ALTERMAN eral. (1959) to the simplified case
of 2 homogenecus Earth and of total decoupling between radial and horizon-
tal displacements. We extend the results of ANDERSSEN ef al. (1975) and of
GriserT (1975), to discuss the values of the group velocities, inside the various
families at low I. A comparison is made with the values computed for a re-
alistic Earth model. The third section formally presents the classification of
spheroidal modes and proposed new nomenclature.

2. A Critical Review of Spheroidal Modes

The problem of the vibrations of an elastic sphere dates back te Lams
(1882). A complete review of the literature on this subject is beyond the
scope of this paper and we shall only summarize the following milestones in
the development of mode theory: Love (1911}, and later Pekeris and JAROSCH
(1958) discussed the eigenfunctions of a uniform, gravitating sphere; ALTERMAN
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eial. (1959) first calculated the excitation coefficients of the various spheroidal
oscillations of the Barth for a simple source; 5416 and Usam1 {1962a, b, c)
and LANDISMAN e/ al. (1970) extensively studied the problem of the oscilla-
tions of 2 homogeneous sphere. Ray-mode duality was also investigated by
BRUNE {1964), Ben-Menaneu (1964), and more recently Woopaouse (1977).

SArT0 (1967) presented general results, applicable to any seismic source,
and introduced a variational method of solving the differential equations.
Kanamort and Crear (1974) gave a simplified expression of the excitation of
both T and § modes by any double-couple, and Kanamori and STEWART
(1976) introduced asymptotic expansions, which help to avoid having to sum
a forbidding number of modes at higher frequencies. The extension of their
method to overtones is necessary to apply their formalism to problems involv-
ing deep source and/or body waves (OxaL and GeriEr, 1978a, b). Experi-
mental identifications of the normal modes of the Earth were systematically
carried out by Dziewonski and GILBERT (1972) and Gripert and DZIiEwONSKE
(1975). A theoretical investigation of the asymptotic behavior of S, at con-
stant /, was given by ANDERSSEN ef al. {1975) and by Greeert (1975). How-
ever, these authors have limited their investigation to w—oo at constant /,
thus neglecting the study of the modes’ group velocity, which is of crucial
importance in the approach of Kanamori and Stewart, as the group velocity
is the quantity associated with the variation of physical properties with wave-
number (or equivalently angular order).

2.4 The following section briefly summarizes Sarro’s (1967) results in the
simplified version of Kanasori and Cipar (1974)

‘The displacement u at a point (r, 4, ¢) in the Earth, generated by an
earthquake, can be expanded into a sum of the normal modes 87 of the
Earth ({: angular order; m: azimuthal number; n: overtone number); the am-
plitude of excitation of a given mode by a particular source can be separated
into radiation pattern factors (p,, ¢,, $), depending only on the mechanism
of the earthquake, and excitation coefficients (K, &, K; IV,), depending only
on the source depth and on the particular mode considered. The notation
in this paper will always be that of Sa1to {1967) and Kanamorr and CipAg
(1974). However, the angular order number will always be [, Also, N, is
the excitation coefficient for a purely compressional source, adapted from
Takeuchs and Sarre {1972):

N, == —4,#-&,2;{(11;FI_1L~’»I ) Dy, (1)
Sati e 2
where D(r)Y7(0, d)=c,=¢,, +¢p+3,, is the trace of the slrain tensor or
deformation: B
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4 I} 2p,
D(rs)m"—“"‘wgi ""'y;(rs) + y2(r282;"”r ' }fz!;ys(ﬁ) . ( 2 )

S

Following KanamorI and Cipar (1974) and KaNaMORI and STEW arT (1976),
we will always normalize y,(a) to unity and the excitation functions will
always be computed assuming a double-couple morent of 10¥ dyaes-cm (or
a purely compressional moment of 107 dynes-cm for each of the three equiiv-
alent dipoles in the case of a compressional source).

The computed data set used in this study consists of some 5,200 theoreti-
cal eigenfunctions for the Earth, computed by Buranp and GILBERT {1976)
for model 1066A (GILBERT and Dziewonsky, 1975). This data set includes
1,936 torsional and 3,271 spheroidal modes, representing all solutions with an-
gular order less than 151 and periods greater than 45 seconds. For periods
larger than 150 seconds, the solutions for all torsional modes and most sphe-
roidal ones were checked against an independent recomputation by the author,
using model C2 (ANpERsON and HART, 1976), and the program developed by
Kanamori and ABE (1968). The eigenfunctions were processed to obtain the
periods (7'), phase velocities (C), group velocities (U), attenuation factors (Q),
surface transverse displacements { y{a), with y,(@)=1, to be abbreviated below
as y,). The excitation functions N, K, K, and K, (L, and L, in the case of T
modes) were obtained for 23 standard focal depths between 0 and 750 km,
The values of these parameters represent more than 400,000 numbers and
cannnot be listed here. We present only typical examples.

It should be noted that the group velocity U is computed here as outlined
by JerFrEYS {1961):

U= (At AR (3)

where k=(I-}-1/2)/a is the wavenumber, and the /s are energy integrals in-
volving the eigenfunction and its derivative with respect to 7. The concept
of group velocity assumes the existence of a set of modes (generating a wave),
whose physical properties vary smoothly enough that they can be easily fol-
lowed and considered as continuous with frequency, despite the discrete lay-
out of the modes. The group velocity dw/dk is then used in the interpolation
of physical properties of the modes (Kanamori and STEWART, 1976). In the
case of spheroidal modes, this assumption might sometimes be inappropriate
along an overtone branch n==constani. We shall return to this point below.

The values of Q were obtained both from the MM8 model of ANDERSON
et al. (1965), and from the more recent SL2 model described by ANDERSON
and HarT (1978). The primary difference between these two models is the
presence of a zone of low @ at the base of the mantle, and the fow values of
(2 in the inner core in model S1.2.
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2.2 Difficulties with the conventional nomenclature S,

In the conventional nomenclature, modes of identical I are assigned an
overtone number by increasing frequency: the mode with the longest period
is calied ,5,, the next one ,S,, and sc on, {The first mode with /=1, §,, which
represents a rigid body translation of the whole Harth, and for which ym, =0,
is not wsually included in any compilation of § modes, although it is tacitly
part of the conventional nomenclature.) A similar method is used for tor-
sional modes ,7,. However, the torsional nomenclature does not usually in-
chude the inner core torsional oscillations, for which no displacement can be
transmitted through the liquid outer core, and which therefore, can be nei-
ther excited in the mantle nor observed at the surface of the Earth. In the
case of spheroidal modes the following problems are encountered:

i} Itis no longer true that the vertical eigenfunction, y,(r), of .5, has n
zero-crossings along the radius of the Earth. This property, which holds for
T modes, remains (rue in the case of § modes onty for n=0, for /=0, and,
locally, for other values of n and [,

ti) For /=0, the number of S, modes over a given range of frequencies
is much smaller (roughly 2.5 times) than the corresponding number of their
neighbers S, or 8, For example, ,,5, has a period of 57.7 s, which is com-
parable to the period of ,S.: 56.4s. Thus, one cannot link those so-called
“radial” modes, ,5,, with the other spheroidal modes, resulting in their being

Fig. 1. Frequency vs. angular order plot of the spheroidal modes used in
this study, as computed from model 1066A. Overtones are traced and
labeled as resulting from the conventional nomenclature; radial modes
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isolated (e.g. PEKERIS and JaroscH, 1958), and often listed separately in dif-
ferent tables (e.g. AnpersoN and Hart, 1976, 1978).

iii) Girert and Dzizwonski (1975) have pointed out that the conven-
tional nomenclature for certain modes may depend upon the Earth model
used to compute their periods: For example, .S, and .8, are interchanged if
one uses 1066B instead of 1066A (ANDERSSEN er al., 1975).

iv) However, the most important drawback of the conventional nomen-
clature is the absence of continuity in the physical properties of the modes
along overtone branches: Figure 1 is a plot of the eigenfrequencies of the
spheroidal modes (computed from model 1066A) used in this study, the over-
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Fig. 2. A plotof several physical properties of spheroidal modes
afong conventional overtone branches: (a) Group velocity
U along 2081, 2051 and 87 (I=21-20); (b) Excitation coeffi-
cient K, at a depth of 630 km, along 2451, 215 and 25 (¢ @
along the lower overtones »5; to 55, as & function of period.
(This last plot is taken from Anperson and HarT (1978).)
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Table 1. An example of discrepancies between dispersion group veloci-
ties U™ and energy integral group velocities U,

Mode Periods (s) £ {Jamyfs) Qs s
5052 55.19 £6.43 984 0.076
505y 54.96 ¢.38 258 —7.98
5157 54.98 0.43 260 -4, 48
5153 §3.95 15.63 980 0.003

Drispersion group velocities U*:

59S2~50S3I 3.04 km,’s 51S2751S31 13.9% 1<m,fs
sgSg—51Sg.‘ 0.28 kl’BfS 59S2 w5,1»5(:_:,2 1667 km/s

tones being traced and labeled as they result from the conventional nomen-
clature: They clearly display a very rugged behavior of the periods T along
overtone branches. Similarly, Fig. 2 shows the varjation of the group velocity
U, and of K, (for a depth of 650 kum), along the three branches 8, ,,5; and
w9, and of O along the lower overtone branches 8, to ,$;. These curves are
totally irregular, and no physical interpretation of them is apparent. Such
irregular behavior is not observed for torsional modes, which exhibit smoothly
varying properties at similar periods and/or angular numbers.

v) Also, in some cases, the group velocity I computed from JEFFREYS
(1961 formula does not represent a correct approximation to the dispersion
dw/dk along an overtone branch n=constant. As an example, in Table i,
we list the properties of four adiacent modes {;,S,, ;S 553, 5,5;) and compare
the theoretical group velocities U (computed from Jeffreys’ integrals) with
“physical” group velocities U, obtained by approximating the definition of
group velocity:

U =dw/dk , (4)

by UFfe=a (,0,,,—,»;) along what is commonly called an overtone branch,
that is a set of normal modes with constant #n. The agreement is seen to be
very poor. Also, the other physical properties (such as Q, y{a), K,, ...)
strongly vary along the overtone branches (n=30 or n=51). Again, this
behavior is absent from torsional modes, for which the group velocity U=
A/ C7, (in JEFFREYS' (1961) notation) is always an excellent approximation
to the dispersion dw/dk along an overtone n=constant.

2.3 What should be called an overtone?

Going back to the example in Table 2, we achieve a much better agree-
ment between U and U* by computing U* along “diagonals” (;;S;~y,S, and
08w0s). As Jeffreys’ calculation is, itself, based upon the physical concept
of dispersion and uses Eq. (4) as a start, this suggests that the concept of an
“overtone branch” as a set of modes sharing some physical property is, in the
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Table 2. Physical properties of o831 (7<n<62) and of a few .5s.

Mode Period () U (krn/s} Orrars Osia b

78 1 449.2 6.82 378 336 5.9638

g8 1 348.3 14.03 1,633 1,058 0.2245

9.5 1 312.3 0.67 356 304 —~2.9751
s 1 292.2 25.83 7,961 289 0.1600
s 1 2783 15.18 1,749 853 0.1306
128 1 232.4 0.80 371 290 22.8094
1385 1 222.5 14.36 1,475 §34 —0.1131
4.5 1 201.6 25.88 7,746 296 —.0256
158 1 188.9 16.83 1,729 816 0.039%
les 1 186.6 0.69 333 264 26.2565
178 1 163.4 15.55 1,732 978 —0.1424
188 1 156.1 1.18 351 275 §.2746
98 1 154.6 27.32 7,837 307 0.4659
208 1 143.9 15.74 1,900 1,000 0.0101
218 1 133.1 0.33 350 274 --8.1449
228 1 127.8 14.99 1,864 1,063 0.1087
238 1 125.9 28.07 9,881 292 0.0842
245 1 i16.6 0.34 3i9 251 —05.163¢
258 1 115.5 14.22 1,745 999 - (0.0428
265 1 106.3 27.41 8,023 315 0.0441
278 1 105.3 16.19 1,732 831 0.0777
2858 1 103.9 0.46 323 251 —27.5566
285 1 97.1 16.23 1,643 970 —{.0509
308 1 93.4 0.35 329 255 12.3919
38 1 9i.9 27.68 9,120 299 0.0111
2S5 1 9G.2 17.38 1,768 888 —0.,0215
335 1 85.9 0.42 329 255 —8.8121
45 1 83.8 15.86 1,692 1,027 0.1487
338 1 81.0 28.31 2,936 304 0.0230
3B s 1 78.4 14.69 1,767 1,017 --0.0646
375 1 77.9 0.30 324 251 49.3724
/I 1 73.4 15.35 1,852 1,010 0.0443
/81 72.4 28,29 9,878 297 0.1169
4085 1 71.9 .24 324 250 —45,6021
418 1 69.1 15.96 1,700 992 ~{.0278
428 1 66.8 0.21 323 252 22.0528
4358 1 65.6 20.42 2,269 572 —0.6242
445 1 65.4 25.47 4,041 379 —0.0262
458 1 62.4 1.95 3ol 278 —2.9868
465 1 62.2 14.90 1,102 735 0.3798
478 1 39.7 28.33 9,674 297 —0.0122
488 | 59.2 15.34 1,587 943 —0.0373
45 1 38.5 0.21 334 254 156, 7702
565 1 56.4 14.96 1,677 1,024 (.0333
5158 1 55.0 0.15 340 257 —41.329
528 1 4.9 28.55 9,940 303 —0.1273
538 1 53.9 i5.16 1,648 1,007 —0.0003
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Table 2. {continued)

Mode Period (s U7 (km/s) Oains Osre Vs
5458 1 51.9 0.15 335 256 22.6772
58 1 51.6 17.46 1,778 962 —0.0492
568 1 50.8 28.52 9,775 297 —0.0327
575 1 49.5 17.24 1,653 962 3. 1198
5858 1 49.2 0.35 337 256 9.8431
5058 1 47.6 16.50 1,714 966 -0, 0267
608 i 47.3 28.65 9,555 302 -0, 0466
615 1 46.8 0.16 349 259 - 267 . 0852
628 | 45.7 15.03 1,665 1,033 0.0305
3ty 5 82.7 23.96 5,645 310 £.0880
328 5 791 14.79 i,737 G921 0.0177
335 3 77.6 G.77 328 253 -1.5586
48 5 74.4 16.35 2,051 667 0.028%
58 58 73.4 24.47 5,174 338 0.0347
65 5 1.7 .99 328 253 7.5608
378 5 69.7 14,83 1,632 968 —0.0380
385 5 66.6 1.08 329 254 31.5322
398 5 66.4 24.85 6,362 307 0.0619
408 5 66.0 15.90 1,671 807 0.0034

present case, better applied diagonally than along lines of constant n. Simi-
larly, Bruwg (1964) has shown that the group velocity of a mode can be
interpreted in terms of the spatial variation of the phase spectrum of body
waves to which this mode contributes. His fermalism, however, involved
taking derivatives of the phase along overtones branches (/=constant in his
notation), whose members may not contribute to the same continuous set of
body waves in the classical nomenclature.

By doing so, we also regroup modes having comparable values of all
physical properties, such as O, and y, (see Table 1). Also, Fig. 3 shows a plot
of the excitation coefficients N, K,, K,, X, as a function of depth for each of
these four modes. It is evident that there exist a strong correlation between
the eigenfunctions of ,,8, and S, as well as between those of .8, and si0as
rather than along the lines n==50 or #=51. The modes with farge K, and N,
cocfficients are those with larger group velocities, higher Q’s and lower BAR
The other two modes exhibit large K’s, have |y,| larger than 1, and share
low group velocities and low Q’s. From this evidence, it is concluded that
mode brapches should be allowed to cross, if they are to carry a physical
meaning. This point is important, since both the concept of a wave, and
the applicability of asymptotic expansion techniques are dependent upon the
ability to deal with a whole set of modes whose properties vary continucusly
with wavenumber of frequency.
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2.4  Empirical evidence for three different families of spheroidal modes at
low |

Table 2 lists the physical properties (T, U, @, y,) for all modes 5, (7<<n<
62) and for a few S, modes. (The purpose of incorporating the latter is to
show that the trends defined by the ,S,’s are indeed present for other values
of 1) From these values, it is casy to ideatify three families, whose properties
are summarized in Table 3.

1st family: K modes. These modes are characterized by: 1) very large
group velocities, usually in excess of 25 km/s; ii} values of ( extremely de-
pendent upon the mean Q at the core-mantle boundary (CMB) and the inner
core (around 8,000 when using MM8; 300 when using 8L2); iii) a low value of
| ¥5! {on the order of 0.1); and iv) very low excitation coeflicients for all depths
down to 750 km. Items ii) and iv) clearly identify these modes as Inner Core
modes (we use the letter K from the German “Kern”): The attenuation model
SL2 (AnpersoN and HarT, 1978) is characterized by a high-attenuation layer
at the base of the mantle and in the inner core. It can also be proved that
K modes are indeed the unobserved “core” modes, as defined by GILBERT and
Dzigwonskr (1975).

2nd family: C (Colatitudinal) modes. This is a family of highly attenu-~
ated modes, with low group velocities, and high values of |y {a). .5, and
55, studied in the previous section, belong to this family. Furthermore, Fig.
2 shows, in the case of these two modes, that at all depths the excitation func-
tion K, remains very large, with K, still substantial, and about 10 times as
large as K,. This property, illustrated in the case of this particular example,
is indeed a common factor of the family. In view of the expressions for the
coefficients K (KANAMORI and Crpar, 1974), this suggests that, for these
modes, the function |y,(7)} remains small with respect to |y,(r)| at all depths.
1t is clear that the displacement in these modes is mainly colatitudinal, hence
the “C”,

3rd family: V (Vertical) modes. This family has intermediate group ve-
locities {10 to 18 km/s for ,5.), high values of @ in both models MM3 (1,000~

Table 3. Propertics of the different classes of modes for low L

Property K < v
Group velocity U 20-30 0.3-4 9-17
(km/s)
Q SL2: 300 200-400 760-2,000
MMS8: 4,000-9,000
Vs Low =1 <1
(down to 16-9) Up to 100 Down to 0.3 102
Excitation coeffs. Low K; substantial Low K, and K;

K, comparable to £;  Substantial Ky and Ny
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Table 4. Two examples of coupled spheroidal modes at low £

Mode Period (s) U (km/s) Ouws Osee ¥a
..... 2053 129.8 19.45 1,858 458 0.18
215 127.7 20.41 2,972 398 0.11
155 158.0 8.84 720 541 - {1, 28

1684 152.3 7.55 494 390 0.39

4,000) and SL2 {700-2,000), and very small values of [y (a)|. Furthermore,
as shown on Fig. 3, and confirmed by a further study, these modes have large
values of N, and K, and very small K, and K,. All of this suggests that the
displacement in these modes is mainly radial or “vertical”, hence the “F”.
These properties are shared by the radial modes 8, which are in the same
number (20 modes from 200 s. down to 45s.), and have, by definition, no
colatitudinal displacement or exeitation functions K, and K,. The radial modes
are thus part of the ¥ family.

At this point, we have defined empirically three different families of
modes with low [, clearly identified only for phase velocities Jarger than about
26 km/s. There happen isolated cases, when the individual properties of two
modes may violate in some respect the generzal trends in their families. Table
4 gives two examples. We will see later that these are clear cases of coupling,
due to a near coincidence in eigenfrequencies. The fundamental point is that,
in this region of the (w,[) plane {C'>26 km/s), these are isolated occurences,
which do not represent any general physical trend.

2.4.1  Modes with larger values of |

For low values of the phase velocity (C<16 km/s), Fig. | shows that
spheroidal modes are arranged along well-defined, regular, overtone branches.
As in the case of torsional modes, the physical properties of the modes vary
smoothly along those branches, and regularly from one branch to the next.
We will call this family of modes “R” (Rayleigh) modes: The fundamental
R modes do indeed generate classical Rayleigh waves, and it can be shown
that higher overtones are similar to Rayleigh wave overtones, as described,
for example, by Harkripgr (1970},

At vatues of [ for which the phase velocity falls in the range 16-26 kmy/s,
there is no such definite behavior. It would indeed be possible to try to de-
fine two groups of branches (as shown in the upper part of Fig. 8) and as-
sociate them with V" or C modes, or to allow large undulations along branches
{as in the bottom of Fig. 8), and make them R modes. However, neither of
these approaches is satisfactory, since, in both of them, physical properties
do not remain constant along the branches. We will call these modes “H”
(Hybrid) modes.
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The three families of modes K, C, ¥V, isolated empirically at low / in this
section, are, indeed, the ones defined theoretically by ANDERSSEN eraf. (1975)
and GizseERT (1975). However, their theoretical investigations were limited
primarily to the periods I" of the modes, and to the general character (vertical,
colatitudinal or core) of the solution. Also, they only made use of the ex-
treme limiting case [==0 (or /=1 in the case of K and C modes) in their com-
parison with actual computed or observed values, although the three families
can still be identified at higher values of . (Table 2 lists a few modes with
[=35.) ANDERSSEN ef al. (1975) and GirserT (1975) did not study the group
velocity of the modes, which is characteristic of their variation with /, nor
Q, nor the excitation functions. These properties are of fundamental impor-
tance in any attempt to synthetize seismograms by asymptotic mode theory.
In the next section, we will show that it is possible to derive the group ve-
locity of the families of low-{ modes (K, €, V) and to extend most of the prop-
erties derived by ANDERSSEN er al. (1975) to non-zero values of [, under very
simpie, if somewhat crude, assumptions.

3. A Theoretical Approach to the Various Properties of Spheroidal Modes of
Low |

In order to show that most of the properties of the various families of
modes can be derived sinply, we shall consider here the normal modes of a
homogeneous sphere (with only the possibility of a fluid core), and we shall
neglect the influence of gravity.

The theoretical problem of the sphercidal eigenvibrations of 2 homo-
geneous sphere was studied by Love (1911) and Pekeris and JaroscH (1958).
Taxruchl and Satto (1972) gave the comple solution for the eigenfunctions
of a homogeneous sphere (pp. 243-244). The reader is referred to this paper
for the exact (and rather elaborate) expressions of the solution. Some of the
theorstical results in the following section were given by ANDERSSEN er of.
(1975) and GrrperT (1975) for constant [ {(mostly /=0 and [=1}. Their ex-
tension to a variable [ allows a theoretical study of the group velocity of the
modes.

Rather than start from the exact solutions and adapt the equations to our
particular cases of interest, we will try to simplify the system of differential
equations for spheroidal modes, before solving it, by use of physical argu-
ments, thus keeping a stronger physical insight into the properties of the solu-
tions. We start with 3a170%s (1967) system, and we assume that we can neglect
the influence of gravity. The system then reduces to: dy/dr=Cy, with y7=

{yl’ Yar Voo J/4}, and:
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.21 L L2 0 |
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Here again, L*=[(I--1). For [=0, this matrix has an entire quadrant of zeroes,
which means that the system breaks down into two completely independent
systems of order two: one involving y, and y,, the other y, and y,. We will
now solve both of these simple systems, and look at the case of small, but
non-zero L%

3.1 Solutions with mainly radial displacement (V> modes)

For /=0, the system is completely decoupled, and, as shown by GiLsErT
(1975), the solution for a homogeneous sphere compatible with the boundary
conditions js a spherical Bessel functions of order I:

h=plwr/a). (6)
For high overtones:

P PR (p integer) {7
The frequency spacing between the subsequent radial modes S, is therefore
df=wa/2a. The average value of « in the Earth is 10.46 km/s (JEFFREYS and
BuLLEN, 1940). This yields 4f=8.21.10"*Hz, in excellent agreement with
the average separation observed for ,5;: 4/=8.27.107*Hz. These results are

similar to those of ANDERSSEN e al. (1975).
For [ small, but nonzero, it is no longer possible to ignore y;and y;: The
third column in matrix (5) will inevitably bring coupling between the vertical

and horizontal motions. We will therefore simply assume that [y.l< 1, and
that the corresponding modes are still basically irrotational, that is:

curla=0, {8)

Using (5), this yields:
ya=dyafdr=—(py—pi)/r=mnjr . (9}
This shows that while y, might be negligible, its derivative y} should be kept

in all equations. Then, from the third line of (5), y,=2pw,/r, and eliminating
¥, from the first two lines yields:
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]
WDy G-t 2 Zé(iz z)j) afr?= (10)
Given that |y,|€}y,}, and that for the actual Earth, either z==0 (in the core),
or #=7 (in the mantle), we can approximate the last bracket by 2, and then,
bearing in mind that (ry,) =y,, we find that this equation is nothing but the
derivative of the spherical Besse! equation of order [/, written for the function
(rv.). We conclude that the solution for y, is:

lr)=ji{orfa). (11)

Note that this solution holds for /=0, since ji= —j,. Using the well-known
expressions (ABraMowITz and STEGUN, 1972 (p. 324)):

XY == E 25T, p (%) and T (x)=/2[ax.cos (x—vr[2—nfd)
for x3»1, (12)

we find that the boundary condition y,(a)=0 defining the angular eigenfre-
quencies of the J modes will rapidly require:

Jo= a[p1f2] . (13)
4]

Here, p is 3 new “overtone” number inside the ¥ family. We have thus de-
rived the law of variation of the eigenfrequencies _, of the I modes, both
with p and ]. This relation has two consequences.

3.1.1 The frequency spacing at a given I should be independent of |

This is checked against a realistic Earth model in Table 5: The frequency
spacing varies less than 29{ from /=0 to /=9, and stays within 39} of the
value computed on the basis of our rather crude assumptions. This result
was implicit from Gilbert’s paper. However, the numerical values had only

Table 5. Comparison of theoretical and observed values of frequency spacing and
group velocity of the three families ¥, K, C.

14 K C
Af (Hzy computed: 8.21-104 1.43.10# 1.07-10-%
Af (Hz) observed:
=0 §.27.10¢
[=1 §.29.10-1 1.47.10-% 1.07.10-2
[=:5 §.32-104 1.50.10-2 1.06.10-8
1=9 8.41-10+4 1.54.10-% 1.05.10-9
{* (km/s) computed: 15.7 28.6 0
U7 (km/s) observed:
[=21 15.82 27.56 0.50
=5 13.94 24.43 1.80

[=9 13.74 23.01 3.3%
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been checked against the theory by ANDERSSEN er al. (1975) for /=0 and /=1,
3.1.2 The dispersion group velocity along a branch of V modes of constant
P can be predicted
According to (13), we have:

dojdk=a  de/di=ax/2. (14)

The group velocity of a ¥ branch should be 7/2 times the average Earth’s
P-wave velocity. Again, taking the latter as 10.46 km/s, we obtain a figure
of 16.43km/s, in excellent agreement with the values of U characteristic of
V' modes. This agreement between U and dw/dk along a ¥ branch confirms
that a branch of ¥ modes with constan: P is, indeed, a set of physically con-
tinuous modes. A further consequence is that the following relation holds:

p%--lmt:pwhrﬂ * (‘15)

This fact is confirmed in Table 6 and in the general layout of ¥ modes on
Fig 6.

It is important to note that the radial modes »% completely share these
properties, and can therefore be totally integrated into the I family.

The physical property limiting the field of separation between K, C and
¥ modes in the (w, /) plane is the phase velocity C. Therefore, for high over-
tones, one expects the characteristic properties of the various families to hold
even for relatively large values of I, (I= 1020y, for which the asymptotic ex-
pansion of the Legendre associated functions, as suggested by KAnaAMORI and
STEWART (1976), is valid and justifies the use of asymptotic theory. It is

Table 6. Examples of the law ,@ 25,0, for ¥ and X modes.

Mode in conventional ; .
new nomenclature Period (s) Error
108 1wk 119.4 0.39
2552 Vs 116.8
0.925
a3 s 111.8
1.i%
219 0 113.0 2,87,
1858 e 116.2 R
EEH 1V 56.2 0.6%%
36517 15%77 56.5
1.62
24519 12F1s 57.3 0%
am:8a1 uFu 57.8 T
85T 1wk 72.4 o
Y EY. ¢! 72.7 ?3f
3555 5K 73.4 e
K 5.1 2.3%
251 oK - 2.0%

209 e 6.6
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therefore fundamental to have established a theoretical proof of the validity
of the group velocities U, computed from Jeffreys’ formulas, as an accurate
representation of the physical dispersion along a } branch.

3.2 Solutions with mainly colatitudinal displacements (C modes)

For [=0, there can be no physical solution, since they would generate
no displacement. However, this limiting case will be helpful when L?-0,
Assuming that y,=y,==0, and following GILBERT (1975), one finds that the
solution y, now involves both the Newmann and Bessel spherical functions of
order 0. The solution for w is rapidly Gilbert’s Eq. (8):

Jo=p (16)

in total similarity to the torsional case. This yields df=5/2(a—r,)=1.07.10"3
Hz, for an average S—-wave velocity of 6.18km/s (JErrrEYS and BuLLax, 194(}).

Tor [ nonzero, it is no longer possible to assume y,==0. Similarly to our
study of ¥ modes, we will assume that divu<=0, and that |y,|<y,]. Then,
we have, from {5):

N=Lyy—2pfre Ly, (i7)
and
2 Fawte  LP7
A ’_}_ e = . i
Y&+ rb l 7 FZJyS (18)

Technically, this is a Bessel equation of order /. However, since r is not al-
lowed to become smaller than the radius of the core, r,, then L¥r® remains
smaller than L¥rl. As fong as we have

(u“*>>.’3§‘n[,2 . orroughly C»8.a/r,~12km/s, (19)
7

this new term will be negligible, and the solution (whose boundary conditions
are unchanged) will remain very similar to that for /=0. Also, as » never
becomes zero, the coupling coeflicients of order Li/r, in the matrix (5) will
remain very small, and enstire that y, and y, are small. This is a fundamental
difference which makes ¥ and C modes behave differently. In other words,
since the wave cannot propagate into the core, and as long as it has a high
enough frequency, it cannot “feel” the curvature of the Earth; therefore, it
is insensitive to the angular order number I, which characterizes the variation
with ¢, and behaves like a plane wave between two fluid boundaries: This
is what is expressed by Eq. (20):

o= o= L (20)
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An entirely similar situation would arise with a torsional system, and
therefore, both T and C modes should be very similar to their common limit
when L*-0, and share the following properties: Jdf=f/2{a—r)=1.07.10-*
Hz, and a very small group velocity at Iow /. Both of these properties are
checked in Table 5. As can be seen, the agreement extends for values of [
targer than 1. A complete similarity exists between solutions for C and T
modes (except for a different normalization of the eigenfunctions), holding
for periods, group velocities, Q’s, and excitation functions, K, K, L, and L,,
although € modes also have substantial X, coefficients, making a possible con-
tribution to the seismic displacements, especially at nearby vertical incidence
(BurLanp, 1977 and personal communication).

The identity between C and T modes is the mode-theory aspect of the
trivial identity between SH and 5V waves at vertical incidence. The absence
of systematic coupling between C and " modes at high phase velocities simply
expresses the vanishing of all P-8V transmission and reflection coefficients at
zero incidence,

3.3 Inner core (K) modes

Equation (18) can be applied not only to the mantle, but also to the solid
inner core, although neglecting gravity certainly becomes a much poorer ap-
proximation. However, the interest in core modes is, at the present time,
purely theoretical, as none of them is significantly excited by any realistic
seismic source. Boundary conditions now require y,(0)=0; y(r,)=0, where
ry is the radius of the inner core (r,=1,215km). The solution is simply:

Ys=Jiwr[B) (21)
which leads to eigenfrequencies:
3 I 17

This formula extends GILBERT’s (1975) Eq. (9) by incorporating variations
of . The frequency spacing between K modes should then be df=45/2r,=
1.43.107° Hz, for an average shear velocity of 3.48 km/s inside the inner core
(AnpersoN and Harz, 1976), and the group velocity theoretically predicted
at the surface of the Earth: U= far/2r,=28.6 km/s. These values are indeed
characteristic of X modes, as is checked in Table 5. Also, K modes should
follow the law ,w, 2, @, Table 6 shows that this relation holds to within
a few percent. The low value of y(a) associated with K modes is simply a
consequence of the inability of the outer core to transmit transverse displace-
ments: only the small vertical component y, can be transmitted through it to
the mantle and surface of the Farth.
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Although the displacement in them is similar {|y,|> %)), B4. (20) and
(22) show that C and K modes behave totally differently with varying [,
a fact which is not explicitly brought out in Gilbert’s approach. When [
varies, K and ¥ modes do indeed share a similar behavior, as their general
layout shows on Figs. 4 and 6. It can be said that they are the modes of a
spherical body. As shown in Section 3.2, the mantle’s C modes, insensitive
to [, behave like plane waves.

In summary, by assuming that the original system is entirely decoupled at
low I, we have been able to derive most of the properties of the three families
of modes, and their variation with /. Note that the various assumptions which
were made on |y,/y,], curla, etc. can be a posteriori checked to hold: Ii is
possible to do so by using an exact solution, such as the one in TAKEUCHI
and Sarro (1972, p. 243), and assuming (in their notation) y=0; the upper
sign in their Eq. (99) corresponds to ¥ modes, the lower one to C modes.

3.4 Coupling at larger |

We will not discuss the large-! limit of the differential system (5), since
the theoretical study of surface waves has been quite extensive in the past
decades. It can be shown very easily, that, at large [, (5) reduces to the clas-
sical equations governing surface waves (TAxEUCH! ef af,, 1962; Sarro, 1967).
However, we would learn nothing about overiones from the crude model we
started with, since at high frequencies, when the Earth’s curvature can be
neglected, a2 homogeneous medium yields only the fundamental Rayleigh
wave ;5.

On the other hand, it can be useful to examine the coupling between ¥
and € modes as a function of [ as a particular case of coupling between two
dynamical systems. This is an extremely frequent phenomenon in Physics,
and in all fields (guantum mechanics, solid state physics, oscillatory dynamics,
electrodynamics. ..}, its basic effects (spreading out the eigenfrequencies and
hybridizing the eigenfunctions) are essentially similar. Exarmples can be found
in most textbooks (e.g. RocaArD, 1948; Krrrer, 1963}, In order to analyze
the different forms of coupling occurring at various ranges of /, let us think
of the Farth as a physical system having two linear unperturbed dispersion
refations: w= o, (C modes}), and & =w,-+ U-k (¥ modes), where k is the wave-
number around the surface of the Earth, U is the group velocity of the cotre-
sponding J modes. Although we have seen that the exact mathematical
formulation of the problem is more intricate, the physical problem can be
schematized by allowing the dispersion relation to become:

(61— 0,0 — 0y —U-k)=¢*, (23)

where ¢ is some measure of the intensity of coupling. As shown on Fig. 10,
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the dispersion curves are hybridized into the two branches of a hyperbola:

w=:12[oy+ U k40,12 1/24/(0, 5 Uk —w 42 (24)

It is clear from Fig. 10 that the range 4k of wavenumbers over which the
hybridization takes place increases with ¢, and it can be shown from Bq. (24)
that

dh= L. 5 (25)

where 4 is some measure of the maximum allowed perturbation of a branch.

Now, in the present case of the Earth, the coupling terms in Eq. (5) are
proportional to L*. However, the physical quantities directly comparable are
the displacements », and ,. Expressions from Sarro (1967) show that u,cc
Ja £7(0), while nyocy,-dP0)/d8. Therefore, for i1, Jugfu | = (1 1/2Y- | v,/ 74l
and the physical intensity of the coupling is really proportional to /. Further-
more, wavenumbers k can take only discrete values: k=(1+1/2)/a, separated
by dk=1/a. Then:

iy Ailowl!

The hybridization oceurs over a very small range dk, smaller than the
unit interval dk, and coupling goes unnoticed; oniy in the unfavorable case
when a discrete vaiue of k falls in the close vicinity of the crossing point of
itwo branches, do we observe any hybridization of the modes. These are the
few anomalous modes observed within the ¥ and € families. It is also inter-
esting to note that slight departures from the properties of a family, as found
in Tables 2, 4, 6 are an indication of such a circumstance. This translates
into a bump in the curves on both Figs. 5 and 6. A similar situation arises
between ,,8, and ;8 (,V, and :K,), teading to the possible excitation of the
latter by an earthquake, despite its nature as a core mode. The observation
of this occurrence, by Dziswonsk1 and GILBERT (1973) proved the existence
of K modes, and demonstrated the solidity of the ioner core,

i)  Arintermediare 1

4K is on the order of a few sampling units ok, and the two hybridized
branches can be coptinuously identified: The properties of the modes along
them vary continuously from one type of family to the other. However, the
coupling range 4k is still small enough that multiple coupling between more
than two overtone branches does not take place: This is the general behavior
of H modes.

iy At large [

4Ky 3k, the byperbola degenerates into two parallel straight lines, and
the modes are fotally hybridized, over the whole spectrum (in fact coupling
involves more than two branches at a time). This is of course the case of R
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modes, giving birth to a surface wave in which vertical and horizontal dis-
placements are completely mixed.

4. A Classification and Proposed New Nomenclature for Spheroidal Modes

In this section, we give a formal classification of all spheroidal modes
used in the present study, which is compatible with their physical properties,
as discussed in the previous sections, This classification formally extends the
one outlined in ANDERSSEN ef al. (1975), by identifyidg R and H modes and
by providing general, although revisable, bounds on the various families.
Modes were computer-sorted by meeting the following requirements:

1) K Modes: C>26km/s and Ux=21 km/s.

2) C Modes: C>26km/s, U<8km/s and Q< 500.

3) ¥V Modes: C>26kmys, 8<LU< 2] km/s and Q> 500.
4) R Modes: C<16.5km/s.

3) H Modes: 16.5<<C <26 km/s.

Except for & modes in general, and apart from a very restricted number
of isolated cases of ¥ and C modes, it ic found that, as gxpected, this classi-
fication separates modes along “pseudo-overtone” branches with smoothly
varying properties. We use the term “pseudo-overtone”, or “pseudo-branch”
with reference to the study of a similar behavior in the problem of coupled
air and sea waves (PrEss and HarKRIDER, 1966; HARKRIDER and PrEss, 1967).
In a few cases, in which coupling is importent between ¥ and C modes, both
of the coupled modes would fall into a given family. A small violation of
the above requirements was then allowed to bring the slightly hybridized
mode back iato its original family. It was also decided to incorporate the
two branches of Stoneley modes with phase velocities around 8.5 and 16 kmy/s
into the K family, due to their low excitation coefficients. This helps define
the pseudo-overtone branches of the R family. Due to the close coupling
between the modes 3, and .S, (/< 15), these modes were included into the
H family.

We now introduce a2 new nomenclature for spheroidal modes which
identifies the family and pseudo-overtone branch to which a mode belongs.
This nomenclature will use the five letters X, C, V, M, R and two indices: P
(pseudo-overtone index) and I (angular order index}. The following para-
graphs discuss the assignment of the index p in the five families. Figures 4
to § are frequency vs. angular order plots of the various families. Extensive
tables, giving the correspondence between the new nomenclature and the con-

- ventional one (taken as resulting from the use of model 1066A (GiuperT and
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Dziewonskr, 1975) have been prepared, and are available from the author
on reguest.

4.1 K,. Core and Stoneley modes. (See Fig. 4)

The two Stoneley branches at low C are Iabeled ,K; and ,K,. Then, modes
with given [ are sorted by increasing frequency. These modes are not excited
by any realistic seismic source.

4.2 ,C,. Colatitudinal modes. (See Fig. 5)

The various pscudo-overtone branches ard labeled so as io realize the
identity between ,C, and 7|, modes, as [—0. In this way, there does not exist
a,Cbranch. This point should not appear as a drawback to the new nomen.
clature: it simply means that the corresponding modes are not part of the C
family. In fact, they are H modes. Figure 5 shows that bumps do occur
along C pseudobranches, bringing in negative apparent group velocities This
fact results from coupling with 7" modes, as discussed in section 3.4,

4.3 V.. Vertical modes. (See Fig. 6)
Simitarly, the various pseudobranches are labeled so as to let 5, and

K - Modes B

& b : L P ok | i

4 L n a1 L il oo
ANSULAR QROER

i a0 10 fla

Fig. 4. Frequency vs. angular order plot of the K family of modes. Pseudo-
overtones are traced and labeled according to the proposed new nomen-
clature.
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of the C family of modes. Pseudo- of the ¥ family of modes, Pseudo-
overtones are fabeled according to the overtones are traced and labeled ac-
proposed new nomenclature, cording io the mew nomenclature,

Note the easy integration of the radial
modes (/=:0) into the family.

oV, coincide. Again, except for |V, there are no 7, modes, and the maxi-
mum number for [ at a given p is itself a function of p. This fact simply
means that the missing modes are part of the H family.

4.4 ,R,. Rayleigh modes. (See Fig.7)

The only basic difference in nomenclature between R, and 5, results
from the removal of the Stoneley modes K.

4.5 L H,. Hybrid modes. (See Fig. &)

These modes, which correspend to intermediate coupling, lie at a cross-
ing-point between two trends: the decoupled pseudobranch of ¥ and C modes,
and the coupled Surface wave trend of R modes. Note that the distinction
between H modes and ¥ or C modes, or between H modes and R modes is
extremely subjective and depends entirely on the amount of distortion one is
willing to allow within the physical properties of ¥, C, or R meodes, in other
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Fig. 7. Frequency vs. angular order piot of the R family of modes. Pseudo-over-

tones are labeled according to the proposed new nomenclature,
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Fig, 8, TFreguency vs, angular order plot of the #
family of modes. (a) Shows anattempt to neg-
lect coupling and incorporate the modes into
the ¢ and ¥ families; {b) Shows the opposite
attempt to make them part of the R family.
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words, upon the allowance made for hybridization, a quantity similar to 4
in Eq. (25). Ideally, Eq. (5) shows that, except for /=0, coupling between
radial and colatitudinal displacements is never totally absent from any mode,
and all modes could therefore be considered # modes. This is the basis for
the conventional nomenclature, which, however, leads to a loss of most physi-
cal insight in the properties of spheroidal modes. We believe that the adopted
vatues (16.5 and 26.5 km/s) for phase velocity bounds on & modes maintain
a reasonable balance between the two tendencies. MNote that the pseudo-
overtone number, p, of no ¥, nor C, nor R mode, is dependent on those
bounds. Should the bounds change, a given mode might be moved out of his
family, into another one, but it will retain its p index as long as it stays in-
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Fig. 9. A plot of physical properties of modes along pseude-
overtone branches. (a) Group velocity vs. angular order
along K1, 15 and 14C; (b) Bxcitation coefficient Ky at 650
km, along «Ki, 1%, 15C1; (€) @ along oR;—sR; and oK, as a
funrction of period,
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side a given family. Given this evidence, and in order to achieve the same
stability for H modes, it appears that the only reasonable nomenclature for
H modes is to retain the conventional overtone number, that is to simply have
»5; relabeled H,.

We can now check the effect of the new nofenclature on the five major
drawbacks mentioned in section 2.2:

i) Once the values of p are used for both vertical ,¥, and colatitudinal
»C; modes, and in the absence of occasional coupling, the eigenfunction (y,
for V modes, y, for C modes) has p zero-crossings inside the Earth. In the
case of the simple system described in section 3, this follows from the pro-
perties of the spherical Bessel functions. In the case of a radially hetero-
geneous Earth, this result comes from the Sturm-Liouville nature of the un-
coupled differential system, either for ¥ or C modes. (Ince, 1956; p. 233).

ii) We have already shown that the radial modes .5, are totally inte-
grated in the } family, and that their apparent scarcity was an artifact of the
conventional nomenclature.

iify The physical nature and general properties of a mode can be im-
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Fig. 10. A simplified model of coupling between two families
of modes. Units are arbitrary, Straight lines show the un-
perturbed dispersion curves. The two hyperbolas represent
hybridized dispersion curves for both weak and strong cou-
pling. Dots identify individual modes for a model allowing
only for discrete values of the wavenumber. Weak coupling
is barely noticed, resulting in slightly irregular pseudo-over-
tone branches (dash-dot iines); stroag coupling extends over
several angular orders and generates hybridized branches of
modes.
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mediately read from its name in the new proposed nomenclature. They will
not depend on the model used for their computation (except, obviously, in
the case of H modes). In the example chosen in section 2.1, (5,8, and ,5,),
one of the modes will remain a K mode, and will always be called K, the
other one will stay a ¥ mode, always called ;¥,, regardless of the influence
on their relative periods of the Earth model being used in the computation.

iv) Figure 9 shows the variations of some properties of ¥, C, K, and R
modes along pseudo-overtone branches p—cst.

A direct comparison with Fig. 2 shows a considerable improvement in
the smoothness of these properties, which clearly permits interpolation aiong
the pseudo-overtone branches.

v) The discussion in section 2.3 has shown on a particular example that
U was closely related to U* along a p-branch better than along an r-branch.
This is indeed a general trend, which can be checked all over the K, C| ¥V and
R families.

5. Conclusion

We have shown that the differences in the physical properties, including
group velocity, @, and excitation functions, of the various spheroidal modes
have a theoretical origin in the absence of coupling at low angular order.
We have also shown that, apart from Inner Core and Stoneley modes, there
exist four families of spheroidal modes, corresponding to three different ranges
of coupling:

i} Decoupled modes (boih ¥ and C families)

i1} Modes with intermediate coupling (I modes)

iii) Fully coupled modes (R modes).

In an {{, ») plane, the first group of modes correspond to a domain
studied mostly by core waves; the second one is the domain of mantle body
waves; the third one of surface wave theory. However, the application of
mode theory {especially through a variational approach) to any of the domains
could bring insight into the physical properties of the deep mantle. For this
purpose, in order to apply the interpolation scheme developed by KanaMozr:
and STEWART (1976) to higher modes, it is necessary to have a good under-
standing of the physical properties of the modes over which the interpolation
is made. The proposed new nomenclature should help provide that physical
insight.
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