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Following the formalism introduced initially by Backus and Malcuhy, and
developed for body waves by Btump, we investigate the excitation of normal
modes and surface waves in the Farth by higher moments, characteristic of
seismic sources with extended lafera! dimensions. We derive coefficients of
excitation in the most general case for second order moments (third-order
teasors), and show that they can be readily computed from the double-couple
excitation coefficients for ali geometries, and for both normal modes and surface
waves. We apply our results to a number of simple fault models, including
ruptures involving vertical propagation, which cannot be treated by the classic
directivity method. Whiie it is in principle possible to correct for the vertical
extent of the source through the use of the centroidal double-couple in the case
of simple ruptures, our formalisin can be applied to any geometry, Our results
show that vertical rupture, even over short distances {10 km), can substantialty
modify the excitation of normal modes in the case of dip-slip sources. This
may have Important consequences for moment tensor inversion, and in the
search for deep lateral heterogeneities, Finally, this formalism may be trans-
posed to the theory of tsunami generation.

1. Introduction

In order to retrieve information about seismic sources and structures, it has
been common use in the past 15 years to make use of synthetic seismograms.
In the case of surface waves, this approach has been particularly successful since
the work of HarkRrIDER (1964), who showed that one could conveniently separate
excitation from propagation. Since then, Green’s function responses for point
body forces have been obtained and converted for point-source double-couples,
notably in the case of surface waves by HARKRIDER (1964, 1970}, and for normal
modes by SArro (1967), GILBERT (1970), and KanaMort and Crpar (1974). In
the case of large carthquakes, for which the dimensions and duration of the source
cannot be neglected, one is then led to the foiléwing expression for the -th com-
ponent of the displacement  at ocation x and time i
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where f(§,7) is the density of force acting at point & and time ¢ and Gy, the
Green’s function response. ¥ is the volume of the source, which only has to be
bounded. For a buried fault contained in the plane &,==0, fis given in terms of
the seismic slip [4«] in the plane of faulting by:

FE = p @I, ) O v duE, Yo, )

where  is the medium’s rigidity, div, denotes the divergence operaior in the plane
. ==0), and & is the unit vector normal te this plane (Axt and RICHARDS, 1980).
Assuming knowledge of the function [4] in space and {ime, one is faced, in
computing integral (1), with several options:

a. An actual numerical computation of the integral. Although this proce-
dure is in principle always possible, it is lengthy and can be very expensive, be-
cause it requires the computation of many different Green’s functions, for various
combinations of x and &.

h. Onecan try to obtain a simple analytic expansion of the integral, assuming
the slip history [4u(§, o)} itself to have a simple analytic form. This approach,
named directivity theory, was introduced by Ben-MrNaHEM (1961} and has been
widely used in the study of large earthquakes. However, it has several short-
comings: in order to obtain an integral calculable analytically, one has to meet
three conditions: a simple expression for [Ju], a simple expression for &, and a
simple shape for the faulting area. The second condition, for example, restricts
its use for normal modes to the range of distances where asymptotic expansions
of the Legendre functions are valid; at low angular orders, this may be a strong
constraint.

¢. An other approach, introduced originally by Backus and MULCAHY
(1976), is to expand G in a Taylor’s series of & about a reference point £=0,
thereby taking G out of the integral, and leaving a much more manageabls source
integral. Specifically, one writes:

©l, . e
G'lk(xa i Eo T)T Z} ﬁi )‘:jlg.‘fg T gjnGﬂs,jljg'“j%(x! f, @1 T) * (3)
n=n PE
Moo= 65, 6008 008 @

and then one merely has:
=01
ufﬂ(xn 1‘):: ,?10 m'GM,hjz..qjﬂ(x, t; @, 0}®Mij19'2"'fw(t} . (5)

The M’s are the momenis of the system of forces £ about the point §==8, commas
denote derivatives with respect to &€, and the symbol & indicates convolution.
This method was applied to body waves by Stump (1978), up to order n=3.
Tts main drawback is the number of terms needed, rapidiy growing with the size of
the source {the convergence of the series was discussed by Backus and MuLcany
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(1976)). However, it has many advantages: first, it is a linear method, and as such
holds potential for use in inversion theory; also, it can be readily applied to any
source geometry and time function, however complex they may be. It is inter-
esting to note that the classic resulis concerning excitation of body waves, surface
waves and normal modes by double-couples or more generally second-order
moment fensors, are indeed an application of this method to order n—1 {the term
n==0 is always zero, since the resultant of all internal forees vanishes identically).

The purpose of this paper is 1o derive excitation coefficients of the Farth’s
normal modes and surface waves, for the most general system of sources in the
case n=2, and to discuss some of their properties and applications.  In this paper,
the symbol »# will always be the order of the Taylor’s series in formulae (3, 4, 5):
we will refer to the corresponding moments as being of order (n--1), since they
are (n+1)-index tensor, although they actually represent the n-th moment of the
system of forees £

2. Excitation of Normal Modes by Third-Order Moments (=23

2.1 Introduction

We will consider a normal mode of the Earth {which at this point can be
either toroidal or spheroidal) and denote its angular order by /, its azimuthal order
by m, and its overtone index by N. ‘We will write the set {N, [, m} as the super-
script index . Let #° be its displacement eigenfunction, ©® and Q° its angular
frequency and attenuation; it is well known {(Gugert, 1970) that its excitation
by a system of forces with density f(£) and step-function time dependence is:

A‘J(f):::.:: 1 S ”‘0(5} f(é)dag I_COS o Zexgz(__wm Z/2Q} , (6)
Iy (@)
where the normalizing factor I—S HENu*(E)PA°E can be assumed to be one, and

will be dropped. Here p is the local density in the Earth, and ¥ the volume of
the planet. In this way, the displacement resulting from # 8t any point x is written:

u(x, )=, A((x), )]
or, in terms of Green’s functions
1—¢ ° —@t20°
T 15 6 0= @) TS fjp)( SO0 )

It is straightforward to apply this result to a first-order moment {n=1) leading
to the well-known formula for the excitation of normal modes by a second-order
symmetric tensor with step-function time dependence applied at &:

#(x, )= 2;' {8IM,, u"(x)----i-'-% cos mot(ejij)Q(—wcu‘}t/ZQ") -, (9)

where ¢ is simply the eigenstrain of each mode,
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Generalizing to higher orders of moments, we obtain:

LeI" Lo} o
B, 0= 5 0°(8) 35 2 e (RO My @S LR ORED. 1)
Here, we have written x, for the origin of the £ frame, which will be the point at
which the moments are computed; the rapid computation of the terms in Eq. (10)
requires only cataloguing the derivatives making up the “superstrain’ tensor
i, i3g+7 e shall now concentrate on one mode (and therefore drop the super-
script ©), and obtain expressions of the excitation coefficients in the notation of
Kamamory and Crear (1974), which has the advaniage of being readily usable when
the geographic parameters of the earthquake source are known. FHowever, we will
consider simultaneously all members of a-multiplet {same N, same [, different m),
since individual components of source tensors can excite several of them. Thus,
following OxAL and GELLER {1979), we will define excitation coefficients in which
summation over m has been carried out.  Specificaily, and in the case of spheroidal
modes, these authors introduced coeflicients A,; such that the term E el Myl

{w®¥ht, (x) in Bq. (9), and for the vertical component of motion, could be simply
written —ZEAHM”, ¢ including the (6, ¢) dependence in x. (The factor
—2 1 des;gned to facilitate the passage to the frequency domain, since the term
—cos w°t in Bq. (9) will vield —(1/2)e®* %} Our purpose will be to obtain the set
of coefficients E;;, such that A,;M,; should be supplemented at order n=2 by
(12DE;;: M,;.. In the case of toroidal modes, and for the azimuthal component
of motion, we will similarly seek a different set of coefficients E;, such that
Oxar and GELLER’s {1979) B.;M,; is supplemented by (1/2DE ;M.

2.2 Toroidal modes
Following SarTa (1967), we write the displacement of the mode zT,™:

wkr, 0, ¢}—0 ]

an
uslr, 0, )= wyl(r}@gg “es(mg)

Here, we have used

cs(¢gh)= 1; cos ¢ :l and Sc(gb):[ —sin¢ ] \

sin ¢ cos ¢

se that cs'(@)=sc(¢) and sc'{(¢)=—cs(¢). Upper and lower solutions are both
acceptable, but when we compute #(#) and its derivatives as & moves to the axis
of spherical polars, we need to have -0 and ¢—0 in order to keep continuity of
the local frame of coordinates, and so all sines wiil vanish, Our problem is now
to compute the limits of the 18 independent components of wg =1, ;) a5 60,
&0, and r-»r,. The Appendix gives the expression of the “superstrain’ w in
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spherical polars; we also make use of the following expansions for the P;™'s in the
vicinity of #-=0:

Pin(e0s B)—unst 107 i — > s [ 06 (12)
with

L wemt
e pretmp (e L) W~ m—2P)1 7
readily derived from the classic formula (MORIGUCHI et al., 1959):
fil—mi/2]
Prcos )= D, @ymesin ™8 costHTY {13)
P

Once these limits are obtained through somewhat extensive but otherwise straight-
forward algebra, we express the results in terms of the eigenvector [yi(r), :(r)]
introduced by Saito, and renormalize them in the convention of KanamoRr1 and
CipAR (1974). We also carry out the summation over m, and the cheice of sint or
cos m¢. For first order moments (n=1), we obtain

B,.=0

BT@:V--% Q. sin ¢
L
Brg',’w“’:' 22 Ql cos 95'

By,= 2 “'Qﬁ_ $in ¢

Lo .
Bg(;: '4"'"Qg s 2{’5 (} 4)

Byg == {‘f -0, cos 2¢

Li+L ,
Byy=— O 2Q1 cos &

Byy—— a%--Qg cos 26

By W..f; 0, sin 2¢ .

In the case of symmetric second-order tensors, these formulae reduce to OKAL
and GELLER’s {1979) expressions after summation of the non-diagonal elements
(a typographical error in the sign of By, is corrected).  Also, we have used the
notation @, =dP;"(cos #)/d#. For third-order tensors (n=2), we find:

E'rrr:O }

L. .,
Eog= ~r sin ¢ @, E
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B I;f cos ¢

Eypy=— 3 sin 260,
E

E,ps= ;f cos 260,

L, . ,
Erqigi: 2: 510 ZQ)Q?

Epy=— [L2Q “}-co8 240 ]

Lo . 4,
.Eg,-y:'i; SIn ZQDQg

ano:' L sin g — [Mz sin QO -sin 36Q;] ()

Eggo=— [ M* cos 6y -+cos 3¢ 0s]

8

Epgs— i’j sin ¢Q1w--§~2 [3M sin ¢Q.+sin 36Q]

By [Lﬁ/r“ o~ f---z):l cos 40,

Ly

EMM [LZQO——cos 2601

Eypym= l: sin 260,
Li . Lz 5
Espg=— 5, ©O8 o0 g [3M® cos $Oy—cos 39 0]

L
Eypp=g

5 LM sin Q) —sin 360

In order to simplify the writing, we have set Q,=(dP/™/df{cos ), L*=
[(I41), and M*=L1*—2. The table must also be completed through the obvious
relation E,,;=E.;;. The coefficients L, and L, are the ones defined by KaNA-
morl and Cipar (1974). It is important to note that their knowledge is sufficient
for the computation of all the £7s.

2.3 Spheroidal modes
The sitvation is very similar. We write:
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ulr, 8, Py=y. (¥ }P;™(cos Fyes(mep) ]

u(r, 0, g)=py(r) d(i;m(cos H)es(md) (16)

1
uskr, 0, y=m ya(r)rrs—igé—}’zm(cos Asclmep) ,

and again make use of the expressions for the superstrain w given in the Appendix,
and of the general notation and normalization convention of KANAMORI and
Ciear (1974).  For second-order tensors {n=1}, we have;

p— --é--{Kg'ﬁLNu}PID

Apg=— —Kﬂn 62NG + Agz__.Kz:!pﬂ cos ¢

Apg=— KDEZNQ + A;m KQJPE sin ¢

A oy ey

Agg== ZNng Pl If Pt cos 2¢ (17)

2

Apy—— JE Py sin 2¢

(K K—2N, M° 7. .
Am_:_L .2.1 e c e 2 JK?:IP"'I sin ¢
/Lﬁgﬂ — 1'22 P;Z sif 2‘(‘5
AMx.Z._j_Y%:;KU JANS '{?'Pti oS 2¢ ,

where we have used the notation LP=l(l-1); MP=f2.7, Again, and for sym-
metric tensors, these expressions would reduce to OKAL and GELLER's (1879)
formulae (15). For third-order tensors (n==2), one obtains:

Ak (- EL 4__69.??,) 2
2 PR, + K

E’rrr ”'“[ a .2 2‘L£ L % }‘
. Py
rrd T {K] - Kﬁ]a}, cos 96

WA LA
Een =K+ K] sin ¢

ro=) Kb B2 g o 1B PP :
Lfeaﬂ[Ks"*F 3 K,—I1K, 5 — K 3, oS 20
2

.Erﬂsﬁ"— Ks 4r S 2¢




8 E. A, Oxar

L2 P Pl ,
Eess ﬁil:Ké o+ —"""2]* ‘"quLsz:l" iij"“{“Kﬁ"&i““' cos 29
;LA Wit A .
Em“;[— ';"&"No 2K, w(M 2-—[73 ’)KZ]‘Z;" cos ¢
i M?* LE Po o Pp .
Eﬁm:LKy—wi ....... K.+ 2 ...... K]]Qi ‘T“{K«x“”Kl]é; Cos 2?
P
Epop=[Ks— K1 P 2¢
. 3ME L PE Y (18)
Eaﬁa:[—KawKﬁ— ' 4szl 2? cos ¢ — K 8£r c0os 3¢
ME TPy PE L
Egg‘f,:[—wKﬁJr Ve Kg] 2; cos ¢——K2'-§;~ sin 39
r . M? P : PE_3 e
Egpy=| Ko Koy Kz}_j}‘ cos ¢+ Ki'g - cos 3¢
):Jl_u , ) 0)2r2 P i . .
Eq-,wﬁ[-m - MM Ng —;—21{} 4(M2 m'—ﬁE*)KQ:I 2; Silt ¢
By [Ky— KL sin 20
Jd‘ft’?‘“i 47 AN Ar 8 o
C M r: Py P2 )
Ee%ms:L_Ks'“"”'é“"'“K4+ 2 Kl]"';r“m[Ké'-—Ki]'“;ii cO8 25.9
T .M Pl Peo
E¢0(}: kKG_Kl e E; """ Kg] 2; sin !?“Kz Si‘ Sin 39}
- M2 P,i } P 3 .
Ejsps= L-—stéf----- ;-4"'"-K2:l 2; cos ¢ -Ky 8‘;‘ cos 3¢
T 3M? P P
-EM‘::M“Ka—Kz“F i KZ:‘ 2; sin ¢+K2'8-i_ “sin 3¢,
where we introduce the following additional notation:
K 2N, | L
K&* 6 ;— 2 K2 '
K== Kﬂ%j\ﬂ? r {19
3
KﬁzK_l““"Kg I

and the quantities r, 2, 4 pertain to the source (x=x.; &=¢). Again, although
these formulae may appear complex, they only require the knowledge of the four
excitation coefficients Ny, K., Ki, K, (or equivalently of the vector [y, ¥ ¥, i)
characteristic of second-order tensor excitation. In particular, the coefficients
K,, Ky, K; have been introduced only to ease the writing. We must note, however,
that the relationship between the K’s aad the »’s, as derived by Kanamori and
Cipar and uvsed in Eqgs. (17) and (18), assumes that the influence of gravity can be
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neglected, and that the degree of the differential system is reduced to 4. We
shall come back to this problem in Sec. 6.4.

3. Excitation of Surface Waves by Third-Order Moments (n—=2)

3.1 Introduction

By analogy with the normal mode problem, we will define in this section coef-
ficients Dy, (at order n=1) and F,;; (at order #=:2) such that the resulting motion
of the Earth’s surface can be written:

il N . 1 .
(X, 1)=2. S 3’1(5)‘3“”[1){ 1~M,;j(w)—§—-;Z—F,,-,-ka;(w)]dcu
N ]

{-+complex conjugate for w <0} . 20

In the case of Love waves, u, will represent the transverse component u,; in the
case of Rayleigh waves, it will be the vertical component u,. N represents a
summation over all overtone branches, which will be dropped from now on.

3.2 Love waves
In the case of Love waves, the eigenfunction y:(z) is such that the seismic
displacement can be written:

udr, ¢, z; a)):kl—}mlm(kr)sc(mgﬁ}y;(z)

uglr, ¢, 23 w)=—J, (kr)es(ma) y«(z) 2D

pute the strain and superstrain in cylindrical polars (see Appendix) and use the
expansion |

to obtain their limits as r—0, ¢—0, z—z,, By comparison with Saito, and after
defining the coefficients L,* and L;*:

L=y 8rCULY;  Ly*=y,/8cC* UL pk 23)
we obtain at order n—=1:

D'ra""‘ﬂ: :jz’LZ*Qz sin 2{,5
Dpy=— %“Lz*[Qu“'i* 0. cos 24]

D=L sin ¢ j
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Dy L0 Qs €05 2]

1,. .
Dyy= 5 L Qs 5in 26

Dyo=—L*Q1c08 &

D=0
Dz¢ m::'::o
D, =0

(24)

in which we have written 0n={H, P {kr). (The passage from J,. to Hp™®
results from symmetry relations in (20y). Finally, in the case n=2, we obtain,
with the same notation:

J ®
Fa‘ﬂﬂ:: - }:Cilzf'[sin l;ZSQL——Sin 3¢Q.}}

Frgy—=— kﬁﬂ [cos ¢, -+cos 360

=

Flo= k% " sin 260,

k Ed
Fop= I: 13 cos $pQ:—cos 39 Qs]

*
Foer— "L I5in $0,~sin 3601

kL *
Fg&zrz 21 iQOWCOS 2¢Q2]
Fzrr:__'o
Fzmﬂmo
sz'z:"':O
kL* .
Frog=—- _21 AQy--cos 2001

®

Fpog=—kL*1—C*/F] cos b0,
Fog,=0
Fzzz:()
f Wk
Frp=—"L13 sin 90, +sin 3501

#

. kL
Fupg=""3 [eos $Q:+c0s 360
Fz¢¢:O -

(25)
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3.3  Rayleigh waves
Similarly, in the case of Rayleigh waves, we write the seismic displacement
as:

HAF, ¢3 Z, CU)EJ’a(Z)Jm'(k?‘)CS(m?S)

uglr, 6, z: m)mml’;c(—flfm(kr)sc(m@ (26)

ulr, ¢, z; o) =y (2)J (kr)cs(me) .
In the notation of Sarro (1967), we introduce the following coefficients:
K ey 80 C UL R u
K ¥y 8 C2UT

! | 27)
Ky =3, {8 C* UL Pk i
K#=y [8xC?UL"
and obtain at order n=1:
1
Dwﬂ”é'Kg*[Qosz cos 2¢]
D,y — %-Kz*Qz sin 2¢
D= K K *]Q; cos ¢
Dtjr: W%KE*QZ Siﬂ 2?6
1 (28)

Dy **:"j"-Kz*{Qﬂ -+ Qs cos 2¢]
Dyo=]K K *]Q, sin &
D=—K*Q. cos ¢

D y=—K*Q, sin ¢

Dzz‘* [2_%_2# KI ‘f“ 2+2M Ks QD

and at order n=2;

B K130, co8 60, cos 39
Frpu = K0, sin - 0, sin 3g]

k .
szﬂ w~"‘§"“[K4*MK1K}EQG——Q2 Cos 2¢}

k A
F¢¢z:="2'7{K4* ""Kg*]Qg Sin 2¢
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ZJF e % c ES
Frm k] & —2k) (1= 5 K Jo.cosg

Fm.rm--%Kz’k[Ql sin ¢—Q, sin 3¢]
kg b 3¢
Fys EEKZ [Q, cos - cos 36]

Ko . .
‘F:ﬁrz:' i"{K;'{*“KI'Fjgg s1n 2?5

L . | . {29}
F«awx“z K ¥[30, sin ¢-+Qs sin 3]

k 9 e ] 4
Fygr=" '2"{1{4”‘——Kf"}[Qo“?‘“ Q. cos 2¢]

/?.—fr' M Ve YRy . C? LS i

Fzzzk[ if2u (K" —2K5) (] & )KE ]Ql sto ¢
Fzrrf: §7K4:1{[QGWQ2 cos 2¢5}

k

Fppgms—- 2 K.*Q, sin 2¢

N D T A ,
Fzra"“ k[ ).“E"th KL‘ i R+2M KS ]Qi COS(;:'

fi

Fopp= ;&*[Qr\— 0. cos 2¢]

4 s % L
Fzg}z:'—'k[ﬁ_tﬂz# Kg + 2""2{6 K:; ]Ql Siﬂgﬁ

)‘—}— ! £ ES C2 E
Famh] £ Rk -(1= SO)K o0

In these sets of formulae, we have put Q,=H,*(k#), k is the wavenumber, C the
phase velocity, and the quantities 2, u, &, £ pertain to the source (z=2z,).

4. Properties of the E’s and F's

In this section, we review a number of properties of the coefficients Ey;, and
F 44, defined and computed in Secs. 2 and 3.

4.1 Asymptotic behavior and equivalence between the E's and the F's

Although the E’s were specifically derived in order to be used in cases when
asymptotic expansion of normal mode eigenfunctions is not warranted, it is im-
portant to check that the E’s and F’s become equivalent as we go asymptotically
from normal modes to surface waves. This check can be best described on an ex-
ample. Take the case of the toroidal mode coefficient
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L}_ » dPZE N
Egpge= 4. sin 2¢ v {cos &)

and of its Love counterpart

KL

FM«-::'_ 2 sin 2¢[H2€2}] ’(kr) :

let I—>co, rfa—1, ljak->1, I sin 8/kr-1, replace 7 by S(a/ UYdew, and observe that
i

a'ly* (Love)/I, (toroidal modes)—1 for similar normalization of the solution (e.g.,
y{a)=1 at the surface), so that

Lm% ...... ? mt 1 J— -
Lo~ (m=1, 2); (30)
then note that the quantities to be compared are 2 cos wt(a/UVE;,; and F,, et
(see definition of the E’s on p. 4). and use the asymptotic expansions (l—o0;
Z-300):

P(cos 0)m (— L)/ [2/2TST5 11" cos {(H é)ﬁm; - z]

(31

Ho )2z exp| —i(2—m -2

to obtain equivalence between the two spectral contributions. This result can
readily be extended to the other coeflicients; the six F’s which are identically zero
in formulae (25) correspond to coefficients Eipe increasing slower than (L. /r )5
or {Ls/r )" in formulae (15), since it is well-known that Li/L,=0() as /- co.

In the case of spheroidal modes and Rayleigh waves, one would proceed in
a similar way, after noticing that the normalization assumption of identical y,’s
at the surface will imply

¥; (spheroidal mode)/y; (Rayleigh wave)—1 (j=1, 2) but ~71; /=34, (32
so that:

AL B 1,2 and

A anf* a
K, 4U

(where we have defined Bo=K(yor/uy.)). Here again, we must pay attention to
the fact that as /—co, only principal terms in the E°s and F’s will be equivalent,
and to the following rules: K/ Ei=0(1]1); KifKy=0Q1).

L7 (j=3,4) (33)

4.2 Asymprotic equivalence with directivity formafism

Anticipating somewhat over the results of Sec. 5.1, and again drawing on an
example, we will now use our Rayleigh wave results (29) to investigate unidirec-
tional horizontal rupture (at velocity v,) in the case of a strike-slip fault of length
A. The only non-zero terms in the tensors Af,; and My, are:
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0 (t<0)
M= M 4()=M )= —Mw, /A o<t Afv)
- M 1> A,
(0 v.) (34)
i in thﬁ
RU)= Myt Mg ()= M) =1 —(M At A same
—(MAD) intervals,

where M is the total (static) seismic moment released. At first order in the
variable {wAfv,), this leads to:

A(o)=M(l—iwdj2)  and R(w):-%ﬂ-(p--szAfsv,,) .

Combining both orders n=1 and n=2, and keeping only terms of order (wd/v.),
one finds that the spectral amplitude excited by this system,

n 1 . .
W(Dr?5 "!ﬁDgf"r)M(w) WZ (Fw¢ + ?.@T""!!"'ZP,;;W),R({D) s

is equivalent to

M. sin 29] 1- fod(L_ e )}E (35

an expression identical to the first-order expansion of the directivity formula (BEn-
MeNauem, 1961):
). sin 24 fwd (1 cosg N Fwdll  cosg )]
MEK,*(, sin 2¢ exp‘_* 5 ( e )J s;ncl‘_ 5 (v o . (36)

By ;

Tn reaching this result, we have simply assumed that kr is large enough that 0s/(.~
—jand Q0 ~1

“These results, which can easily be extended to other cases of horizontal
rupture merely constifute a verification of the formalism which we have developed,
in an asymptotic situation for which the higher moment method is not powerlal.
Formula (35) actually shows that at first order in wA/v,, the amplitude of the wave
is unchanged, and any significant analysis should be carried at least to the next
order, which would involve compuiation of fourth-order tensors. Although this
is a clear drawback of this method, we must emphasize that certain simple rap-
tures, such as those containing a strong vertical comiponent, which may affect the
value of the local excitation, cannot be handied by simple directivity theory.
As we will see in Sec. 5, higher monent theory can provide important results
even under the restriction of using only terms corresponding to n=2.

4.3 The “hybridization” paradox
Two of the most fundamental geometries for point source double-couples
are strike-slip and dip-slip on a vertical fanit. It is well known that they give
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rise to simple radiation patterns for body waves and surface waves, in the latter
case independently from frequency and scurce depth. In the case of normal
modes, they are the basic mechanisms characteristic of the coefficients L,, K.
(dip-siip) and L,, K, (strike-slip). No coupling between the two-lobe and four-
Iobe radiation patterns exists for these pure geometries.

it may therefore appear puzzling why, in an excitation coefficient such as
Ey40, which is involved in the horizontal propagation of a strike-slip fault, one
should find the coefficient L, characteristic of dip-slip geometry (or the com-
bination [K;— K| in the spheroidal case). This brings up the following paradox:
Let us position ourselves at a depth such that the strike-slip coefficient L,
vanishes (with y.(r), for example at the crossover point of an overtone eigen-
function). A strike-slip source at that depth should not excite the particular
mode involved, but a sirike-slip propagating horizontally would! The answer
to the paradox resides in the sphericity of the Farth: the momenis M, are com-
puted in a Cartesian frame; if we assume that the direction of slip is constant in
space, the source will grow a small dip-slip component as we travel away from the

vertical. A similar situation arises for spheroidal modes, butin the case of surface
waves, as the radius of the Earth goes to infinity, strike-stip and dip-slip coeffi-
clents corresponding to horizontal rupture remain decoupled, as documented by
formulae (25} and (29).

One could then discuss whether the use of the present formalism is legitimate
in the case of normal modes, when sphericity is implied, and horizontal propaga-
tion is actually not linear propagation. However, one must put this discussion
in perspective: even for the longest known seismic ruptures (e.g., Chile, 1960:
830 km}, the deviation of the local vertical is less than 10 degrees: for most large
events, the figure is closer to 2 or 3 degrees (see for example GrLLER, 1976). It
wouid be futile to address the problem of whether the slip vector remains paraflel
to itself, or rotates with the local vertical along the fault, when one realizes that
degrees, even with the help of sophisticated technigues (ROMANOWICZ, 1981,
Conversely, this example may be used to bear in mind that heterogeneity of the
slip angle in the fault plane, due for example to the presence of discontinuous
asperities, will affect normal mode excitation, and consequently the resolution of
moment tensor inversion.

3. Application to Simple Cases of Finite Sources

5.1 Radial and transverse integrals

From the general definition of M, it is clear that M= M,y;, and there-
fore, one needs a priori compute 18 independent components of the third-order
tensor M. We will show, however, that under exiremely general conditions on the
faulting, only two independent functions need be computed. We will assume that
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Fig. 1. Geometry of faulting and definition of systems of reference used in this study.
The displacement vector is that of the hanging wall (not shown) relative to the
foot wall. The frame used in the normal mode study is shown in parentheses, that
used with surface waves in brackets. 72 represents the boundary of the rupture
area. The asterigk represents the hypocenter, where the rupture initiates; the star
represents the static centroid (assuming that [de] is independent of &), as r—eo.

a. The rupture propagates in the plane of faulting, and

b. The direction of slip remains constant during the faulting.
In other words, and in the geometry of Fig. 1, these conditions merely require
that the system of axes [é., &,, &,] remain fixed during the rupture. However, the
nature of the rupture (upidirectional, circular, ete. .. ), as welt as the shape of
the faulting area (more generally speaking the function [du(§, v)]) are subiect 1o
no condijions. These restrictions apply to a very large number of earthquake
sources. Furthermore, in some instances when they do not apply, they can still
be applied by parts 10 individual sections of the faulting (that is the case, for ex-
ample, for the Tzu-Oshima earthguake of 1978 (SHIMAZAKI and SOMMER VILLE, 1979),
which featured a bend along the fauli trace).

Then, it is immediate to show from Eq. (2), that at order n=1 the only
non-zero components of My; are

Mm:Mm&)z-{zmawu(e, NdEdE, . 37)

Similarly, at order r==2, and after a few integrations by parts, making use of the
finiteness of the source, 0N finds:

Ml%a(f):M}Sl(T): ';Mm(ﬂ:” 3 5 M(§)§1{Au(€= "C)}d&dfzm}z(f)
(38)

Moosf2) = M isaf2) = Myza2) = Mizl7)= g . )8 [ Au(E, N5 dE=T(D)

ail OthEI Mij;,ﬂo,
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so that all components of the tensor M. can be computed from the two inde-
pendent functions R(r) and T(r), representing the moment of the seismic slip re-
leased at time ¢ in the directions parallel and perpendicular to the slip. We shall
call these functions the radial and transverse integrals. Their computation is
straightforward (and inexpensive) given any source model, however complex iis
geometry and slip history may be. It is then possible to rotate the £, 27’8 from the
A $) frame of the mode to the (€., é,, &) frame of the source, so that the n—2
term of Eq. (5):
-é--Ea‘”M‘a 54T (27 terms)

merely becomes: (1/2YER R(z)--ET (=) 2 independent terms). The rotation
from the E,;,’s to ER and ET involves only the direction cosines a,, between
the two frames, and is immediate on a computer:

(39)

ER=E, s /(ai.a a5, +a,a rlls gt 2,60 001, ,) }
ET7= By 01050~ O oy 50+ 0 504 -ty it sy) .

The coefficients «,, are readily computed from the geometry shown on Fig. 1,

3.2 Application to a few simple geometries

In order to study a few simple cases, we will consider a set of two focal
mechanisms, and two rupture geometries: strike-slip and dip-slip events on a
vertical fault, with the propagation of the rupture along a rectangular fault zone,
whose main dimension wili be ecither horizontal or vertical (see Fig. 2). The
reference source (and starting point of the rupture) will be placed at the center
of the small dimensior of the fault rectangle, so that by symmetry, either Rt} or
() will vanish identically.

For each of the geometries involved, we use four sources of different moments
(sece Table 1), with a common geomeltric scaling, and a constant rupture velocity
of 3 km/sec; this introduces similfar scaling in time, which affects excitation by

Table 1. Parameters of the two models of rupture used in Sec. 5, for the 4 scales of
sourees involved (see Fig, 2).

Horizontat Vertical Static

Nature of Moment du Hypocentral extent of rupture centroid Rup ture

rupture (dynfem) (em) depth from hypocenter depth veloizlty

{km) (ke (ki) (km/fsec)
Horizoniat 10% 175 20 0,200 --20, 20 20 3
Horizontal 10%7 76 20 0,93 —-9.3,9.3 20 3
Horizonts) 10% 40 20 0,43 —4.3, 4.3 20 3
Horizontal 108 17.5 20 0,20 2,2 20 3
Vertical 107 186 20 — 235,25 —130, 20 75 3
Vertical 1077 91 20 —12,12 —60,9.3 51 3
Vertical 102 44 20 —5.4,54 —28,4.3 3z 3
3
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HORTEONTAL RUPTURE

4 HYPOCENTER

# CENTROID

-130.

VERTICAL RuPTURE

Fig. 2. Geometry of rupture vsed in the examples of Sec. 5. Top, horizontal rupture;

bottom, vertical rupture. in all cases, the hypocentral location is put at 20 kim

deptls (asterisk); in the case of the 107 dyn/cm source, the dimensions of the souree
are given In km, ina horizontal—vertical frame centered at the hypocenier. For the
other values of the moments, the units must be scaled. The star depicts the posi-
tion of the static centroid {(assuming again that the final displacement is homogenecus
along the fauit). 1q all cases, there remains a choice of dip-slip or strike-slip focal
mechanist.

second-order moments through the term M {o).

1n the case of strike-slip on a vertical fault, the system (é1, €3, ) corresponds

toj((?, 7, —~q3), so that the only non-zero components of M, are:

Mpos=Mase ;; Mggo==- Rt (horizontal rupture), ©F l 40)

Myrs=Mapr=Mro =M gg,—=—T(1) (vertical rupture).

Similarly, in the case of a dip-slip on a vertical fault, (61, &, &)={f, B, =),
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$o that we will only have:
1 .
M=M= M o= — RAE vertical rupture), or
=M= My =R pture) } @
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i Fig. 3a, Comparison of double-couple excitation with the total excitation resulting
from n=1 and n—2 terms, in the case of horizontal rupture and strike-slip focal

mechanism,  Left, toroidal modes; right, spheroidal modes. For each of the 4
{}) values of the moment used, the con inuous line represents the double-couple ex-
3 citation, and the bags include the third-order term.  In all cases, fhe abscissa fs
: angular order number (1), ranging from 2 (ieft) to 100 (right). The vertical scaie
4, : on cach frame is arbitrary.
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Figure 3 compares the excitation of the first fundamental toroidal and sphe-
mﬁdm@m@gﬂﬁﬁmﬂmdwﬂ&mq%deswmemﬂUaMﬁxﬂwwm-
bination of the n=1 and n=2 terms, for the various geometries and moments
studied. On each diagram, the solid line represents the n==1 term (drawn con-
tinuously between individual modes to enhance legibility), and the vertical bars
are relative o the combination of the second- and third-order tensors My and
M ;.. The influence of the higher-order moment is described by the misfit between
the top of the bars and the solid tine. Generally speaking, this misfit increases
with the seismic moment of the source, everything else being constant. This is
expected, since the size of the rupture zone also increases, and so do the integrals

i o T

STRIKE-SLIP
VERTICAL  RUPTURE

T MORES S MODES

HOMENT = 10wwd HOMENT = 10ww2B

HOMENT = 10ww27 MOMENT = 10ww@?

I
| WMMMMMEM

BOMENT » 30ww28 MOMENT = 10026

R

Fig. 3b. Same as Fig. 3a for vertical rupture.

......

\
Y 1\\5\ |
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R(1) or T(1), relative to the double-couple A(). However, a number of more
subtle features warrant further discussion.

Strike-slip: In the case of a vertical rupture, the higher-mode excitation
is proportional to the combination (Esrs+Esrg).  In the case of toroidal modes,
this equals —(L:/2r,) cos 2¢:0,, a term negligible with respect to the double-couple
term involving L, cos 260, since at given /, and for a shallow sotrce, L, <L,
(We must make the distinction with the situation in Sec. 4.1, which involved
[ oo at a given depth, in which case L/L,=0(D.) For spheroidal modes, how-
ever, the n=2 ferm becomes (Ki—K.) (P2/4r,) sin 2¢, in which X,—0 at the
surface, but K, does not, Consequently, we predict a different behavior for

OIP-siip
; HORTZONTRL RUPTURE
|
|

T MOBES 5 MODES

MOMENT = 10wn2a ) , MHOMENT = 10028
MOMENT 10unp7 MOMENT = {0mwp?
b
WWW J
| R

MOMENT = 10uedg MOMENT = 10um2G

T
e ,Lﬁ“ﬁ:in’}f}f%%? ‘M

i !Yfilﬂj !

HOMENT = 10mn2s HOMERT = 10unps

f

|
I
i

|
!
|
Jf 1
I L
f cp il 133 J
AL
| R |
| ”MMMMW e
J
!
1
|
|
1

i

AJI;WL;M;

i :}ﬁfﬁ! ihi J

|

’;%!!H![ |

Fig. 3¢, Same as Fig. 3a for dip-slip mechanism.
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toroidal and spheroidal modes, clearly observed on Fig. 3a: the S modes are sensi-
tive to the higher moment, and therefore to the size of the source, while the
T modes are not. However, in the case of a horizontal rupture (Fig. 3b), the
n="2 excitation, proportional to [Eyss-+2F,s4], leads to terms involving the same
coefficients L, and K, as for the double-couple, and therefore results in substantial
response to the higher-order moments, for both T and 8 modes.

Dip-stip:  ‘The case of the dip-slip source is of particular interest, since for
shallow point sources, the double-couple excitation is very small (Ky=L,=0 for
mﬂ@.E%rahmﬁmmﬂnmwm,megwmegmmmamzme&M+Ew%
which for a torsional mode is

OIP-3LIP
VERTICAL  RUPTURE

T MOBES 3 MODES

HOMENT = 10m2E MOMENT = 30mn28

HOMENT » 102025 HOMENT = 1025

‘
a |

Fig. 3d. Same as Fig. 3b for dip-slip mechanism.
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(Lafro) €08 20 Qu (L /r )L Qo c08 26 0,) . (42)

Since L; € L, this term is on the order of L.,Q.fr,, as compared to L,Q, Tor the
double-couple.  As seen on Fig. 3c, this results in substantial excitation by the
higher moment. Similarly, for spheroidal modes, we find a term on the order
of K,(P2/4r,). In the case of a vertical rupture, however, the excifation, governed
by [&,.4-+ E,,), will be proportional to

BLi/r)Q: cos §=+-(Lyfr) Qs cos glLYCHF—1)+2]

for toroidal modes. The dominant term, (Lo/r ) L20(CH B 1) is roughly [ times
targer than its counterpart for horizontal rupture, and therefore, the higher moment
contribution is very large, particularly in view of the small double-couple excita-
tion.  Similarly, for spheroidal modes, the governing term is

1 o) H 2

]:i “sin ¢ [3 Kot Ky ;_:2/‘; ______ yous %(i%ﬁ) K- (;i?z‘u__ E") ie KZ:! . (43)
'The terms K, and X, are small for shallow sources, but the other terms are large,
and again roughly / times their counterparts for horizontal rupture, giving the
higher moment a strong contribution. This behavior is clearly shown on Fi 2. 3d.

As we will discuss in Sec. 6, the importance of the higher order term for a
vertically propagating dip-slip is not unexpected, since it is geared to the rapid
variation of the dip-slip excitation with depth, which vanishes at the surface, and
whose depth derivative is finite, while the strike-slip coefficient for T modes has
a value stationary with depth at the surface.

6. Discussion and Perspective

The formalism of higher moments, for which we have obtained excitation
coeflicients at order n=2 must be put into perspective and discussed, especially
in view of the other techniques available (e.g., directivity) for the study of finite
sources, and of the extensive algebra involved in deriving excitation coefficients.

6.1 The need for higher-order terms

As pointed out by BAckus and MuLcagy (1976}, the convergence of the series
mnvolved in the Taylor expansion of the Green’s function is not fast, and may be
as stow as that of (6z4/2)"/n!, where 4 is the dimension of the sowrce, and A the
wavelength of interest, although in simple geometries, for which many components
of the higher moments vanish because of symmetry, the convergence may be some-
what faster. Therefore, in order to be readily applied the present formalism
should be extended to higher orders n. This does not involve any mathematical
difficulty, and the differential systems satisfied by the eigenfunctions ensure that
the set of excitation coefficients routinely computed for n=1 is sufficient to com-
pute all coeflicients at all orders n. However, the volume of algebra involved
grows rapidiy with n, and becomes somewhat prohibitive. it may be useful to



24 F. A, ORaL

give a quantitative estimate of the range of constraints imposed by truncation of
the series after n=2. Under Bacxus and MuLcanY’s (1976) conservative estimate,
and assuming an acceptable error of 109 from terms neglected, we must restrict
ourselves to A4/A<0.05 if we keep only n=2 terms, and 0.07 for n=-3. This
would correspond to dimensions of A<<50 km at 200 sec.

6.2 Could we do without n=2 terms?

It is a general property of moment theory that a change of the relerence point
about which the moments are computed, say from x, to X,=x,-+ &, resulis in new
moment components My, which at order n=2 can be wriften:

M.I.?'K"":"'"-M‘ijk+EjM-ik"“"EkM-[j . (44)

Here, we have used the fact that the resultant of the system of forces f vanishes,
One may wonder if it is possible to find a vector & which will make the M, «’s
vanish. In general, this is impossible, since the problem is overdetermined, but
it is easy to show that under the two simplifying assumptions described in Sec. 5,
the system

e —_R(r)/S &, T)AE.dE, (

5.~ 1| wuce, .z, ) (43)

is a sofution. Thus, it appears that it is possible to avoild wusing #=2 terms,
provided an adequalte reference point is computed. Of course, the second-order
excitation coefficients at this new reference point will be slightly different from those
at x,, this difference only expressing the close relationship between the £, ;s and
the derivatives of the second-order coefficients.

This approach has been used in second-order moment tensor inversion by
Dzrwonskr and WoonsoUsE (1981), who call the point X, the centroid of the
hypocenter, which can significantly deviate from the lecation of the earthquake,
as computed from first motion data. However, it is clear from Eq. (45) that
the vector &, and therefore the centroid, is time-dependent. ¥t would of course
be possibie to define a centroid at each time 7, or beiter at each frequency w.
But this would lead to a readjustment of the parameter € in the Green’s function
(and therefore to its entire recomputation) everytime the centroid is moved, that
is at each frequency, or for each normal mode. This procedure is precisely of
the type involved in Eq. (1) which has been avoided, whenever possible both
through the centroid theory, or the present approach,

We have investigated whether the third-order terms would play a significant
role at the frequencies of normal mode excitation, once computed in the frame
of the static centroid E, [r—co in Eq. (49)], in the case of a vertical ruptuze
along a dip-siip fault, and for toroidal modes. In this geometry, and for each of
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Fig, 4. Left, same z¢ left portion of Fig. 34; right, same gs fefs, except double—coupie
and higher moment excitation have been computed using the static centroig as

the four scaled rupireg used in Sec. 5, we have computed the depth of the static
centroid angd calenlated the excitation by the second- and third-order moments
using the centroid ag reference point §=0. Resulss are shown on the right side
of Fig. 4, gng Compared to thege from Fig, 34 (with the reference point al
the location of mitiation of the rupture) on the Jeft, Itis found that, in the frame
of the centroid, second-ordey coefficients are sufficient to adequately describe the
toial excitation, dowp to periods on the order of 100 sec. This result was to be
eXpected, since the simple mode of rupture involved in this particular example
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is relatively short-lived (the total rupture lasting only 45 sec, in the case of
the largest source). However, in the case of a slower rupture mechanism, such
as that involved for a foreshock and a main shock sequence, the centroid would
be significantly time-dependent in the range of frequencies of normal mode ex-
citation, and the third-order terms would contribute significantly.

Additionally, the calculation of the static centroid F., in the forward problem
requires knowledge of the integrals R and T, and the F,;.'s are necessary for any
perturbation scheme, or inversion process automating its search. Finally, as
pointed out by DzIEwWONSKT and WOODHOUSE (1981), the centroid model is not
applicable to ruptures of a more complex nature.

6.3 Importance of source size on excitation

Perhaps the most important tesult of the present study is the size of the
contribution of third-order moments fo the excitation: substantial excitation of
the Earth’s modes by third-order moments can take place even for relatively small
carthquake sources. The examples studied in Sec. 5 bave shown that events in
the moment range 10%-10% dyn/em (M,=6) with fault dimensions on the order
of 20 to 30 km can give rise, for dip-slip geometry, to significant n==2 terms, at
periods on the order of 100 sec, despite the fact that such earthquakes are usunally
considered to be adequately represented by point source double-couples. We have
shown that, even for such small events, an important contribution to the excitation
is made by vertical ruptures for shallow dip-slip mechanisms although double-
couple theory predicts weak excitation. Conversely, in the case of strike-slip
mechanisms, the vertical rupture contributes no significant excitation. Vertical
rupture will therefore affect significantly the refative excitation of dip-slip and
strike-slip components of an earthquake. This property is of course an expres-
sion of the well-known singularity of the dip-slip excitation for shallow sources,
which leads to instability in moment tensor inversion (KANAMORE and GIVEN,
1980), and to a critical influence of depth on its results.  Although techniques
have been developed recently, which permit determination of the ceniroid depth
simultaneously with moment tensor inversion (RoManowicz, 1981), their preci-
sion is about 5 km, which unfortunately, is also comparable to the offset from
the original epicenter to the centroid in our example of smallest moment. In other
words, these techniques might not, in the case of M, ==6 events, distinguish between
the original reference point and the static centroid, leaving third-order terms of
significant importance, which will in turn bias the geometry of the inverted
moment tensor.

Furthermore, it has generally been observed that, although the normal mode
frequencies observed on earthquake spectra (e.g., on records of the TDA network)
are in excellent agreement with theoretical computations, their amplitudes are often
grossly misfit. JorDAN and SILVER (1981) have suggested that structyral lateral
heterogeneity in the Earth could affect excitation coefficients by as much as 30 %
Notwithstanding this very possible source of misfit between classically computed
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faulting, parameters which are not readily incorporated in methods such as diree-
tivity widely used to account for this phenomenon, Source dimensions should
be taken into account in such studies, either through the centroid approach (when
applicable), or through the systematic use of higher moments, of which this paper
presents the formalism at order F==2,

Finally, the present formalism and its extension to higher orders could be

low phase velocity, tsunami modes have small wavelengths, and directivity effects
of a tremendous amplitude and devastating character are predicted and observed
(SPA¥TH and BERKMAN, 1969; Ben-MeNAHEM and ROSENMAN, 1972}, Also, be-
cause of the poor penetration of tsunami eigenfunctions into the solid Earth,
tsunami excitation ig critically dependent upon source depth (Warp, 1980), and
vertical rupture wili contribute significantly to the excitation,

All the formalism described in Sec. 2 can be applied to {sunami excitation,
but we should be carefyl to include the gravitational components (y;, 1) to the
eigenvector, in order to obtain correct expressions for the excitation coeflicients.
It is straightforward to show that only the second derivatives of the displacement
eigenfunctions y, and Vs are affected by the gravity terms, so that the expressions
for the 4,’s and most of the E;;’s are unchanged. Cnly E,., E,,.. and Fo
must be corrected by adding the foliowing terms to the expressions given in
formulae (18):

. I gr P
6]17,,,.: 2 &'é"[‘&fﬂ_—[lz}(@ﬁ K7] ! ]
1 }
GEW.T: — "21; 'Z:::{Kd "‘Kg]”}:ﬂl Cos 9’5 } (4‘6)
SEy == ﬁ-é—— -gf[m ~ Kl sin 6 ‘
where we have defined:
K=K, X
g ¥ ( 47)
K=K I He
8 4 g yl

and g is the local acceleration of gravity at r—r,,
The higher moment formalism may be of great interest to study tsunami
generation in complex cases, such as those involving vertical Tupture in earthquakes
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of the Sanriku type, breaking the lithosphere away from the subduction area
(KaNAMORI, 1972), or the Kurile Islands earthquakes of 1975, for which rupture
was suggested to have taken place in relatively soft material, located in the wedge
of the subduction zone (Fuxkao, 1979). 1In this latter case, the present theory
allows {o casily change the parameters of the rupture, in particular the rigidity
u(8) along the fault, and could be a very powerful investigative tool.

7. Conclusion

‘We have derived excitation coefficients of normal modes and surface waves
for the case n=2, and shown on a number of examples that higher moments can
play a significant role in the excitation of normal modes, especially in the case
of vertical rupture.  Although the algebra and book-keeping involved may prevent
extension of this formalism to much higher orders, we believe that this approach
will prove useful, in providing insight into the influence of source finiteness,
notably in its vertical exient, and even for moderately-sized carthquakes, onto a
range of phenomena including normal mode excitation, moment tensor inversion,
the search for deep lateral heterogeneity, and the understanding of tsunami excita-
tion.

T thank Hireo Kanamori and Barbara Romanowicz for preprinfs of their papers, Lane John-
son kindly sent a copy of Brian Stump’s Thesis. This research was supported by the National
Science Foundation, under Grants EAR-79.03907 and EAR-81-06106.

APPENDIX

We give here for reference the expression of the first- and second-order tensor
derivatives of the displacement, both in spherical and cylindrical polar coordinates.
We define u as the seismic displacement, v as its first spatial derivative and w as
its second spatial derivative, so that in Cartesian coordinates: vy;=1:, ; and w, =
u: ;. Formulae (A.3) and {A.4) should be completed by the obvious relation

Spherical polars:
Vpp== Uy
Vop==lyg »
Vgp==lUy »
1 1 .
Ppg == Uy g— """
af r 4, ¥ @
Uy gt lu
U R I s
oo g o Uy

(A1)

’U«pa':"f; My, l
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" rsiné
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Cylindrical polars -

Vpp ==ty » "
i
Vor==tly,, |
Ver=U, ‘!
H
?""i'Z::uT,Z Il
Vg =Ug , !
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|
szx:uz,z L
1 ; (A.2)
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Spherical polars :
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Mjrrlﬁ = ?"7'511' o
i : i
Waggo= r[ y {tty, g Ug,4) V1, QJ
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