Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea

Philippe Heinrich and Alessio Piatanesi
Laboratoire de Détection et de Géophysique, Commissariat à l’Energie Atomique, Bruyères-le-Châtel, France

Emile Okal
Department of Geological Sciences, Northwestern University, Evanston, IL

Hélène Hébert
Laboratoire de Détection et de Géophysique, Commissariat à l’Energie Atomique, Bruyères-le-Châtel, France

Abstract. Modest earthquakes may trigger large submarine landslides, responsible for disastrous tsunami waves, as demonstrated by the Papua New Guinea event of July 17, 1998. The relatively small earthquake was followed by unexpectedly high waves, up to 15 m, wiping out 3 villages and killing more than 2200 people. Numerical simulations show that seismic dislocation sources are not energetic enough to reproduce the observed tsunami along the coast. Tsunami generation by a submarine landslide has been simulated by a finite-difference model, assimilating the landslide to a flow of granular material. Long-wave approximation is adopted for both water waves and the slide. Numerical results show that observed inundation heights are well reproduced for a volume of 4 km3 located 20 km offshore, sliding downslope with a Coulomb-type friction.

Introduction

On July 17, 1998, a tsunami devastated the coastline of northern Papua New Guinea (PNG) [Tappin et al., 1999; Kawata et al., 1999; Piatanesi and Heinrich, 2000], with run-up heights reaching as much as 15 m at a location on the Eastern spit of Sissano Lagoon (Fig. 1). This tsunami is unusual in at least two respects: first, the discrepancy between run-up amplitudes and the relative moderate size of the parent earthquake ($M_s = 6.9$ and a value of only 3.7×10^{19} N-m for the final estimate of its seismic moment) [Tanioka, 1999]; in addition, it features an extreme concentration of the wave energy on a narrow stretch of coastline: as documented by 80 inundation heights measured along a 40-km section of coast during a post-tsunami survey, run-up heights greater than 7 m were restricted to a 20-km coastal segment, centered at Sissano Lagoon (Fig. 2). Outside this segment, they decrease very rapidly, both eastwards and westwards to benign values of 2 m or less. Both properties are unusual, even considering the so-called “tsunami earthquakes” [Kanamori, 1972], whose tsunamis are greater than expected from their seismic waves. Based on Newman and Okal’s E/M_s discriminant [Newman and Okal, 1998], the PNG earthquake did not possess the slow source characteristic of tsunami earthquakes such as the 1992 Nicaragua, 1994 Java, or 1996 Peru events [Imamura et al., 1993; Heinrich et al., 1998]. Similarly, in most recent tsunamis, comparable run-up heights were spread over a much longer (100 km) segment of coast.

It should be noted that, inside the coastal segment most inundated, strong variations of the measured run-up heights are observed, probably linked to changes in vegetation density. From these variations, it can be inferred that the highest run-up values are reached close to the shoreline in areas with dense vegetation, against which tsunami waves either break or are reflected.

Seismic Sources

We first consider seismic dislocation sources as the mechanism of generation of the tsunami. The CMT focal solution of the mainshock (Fig. 1) can be interpreted along either fault plane: a classic low-angle thrust subduction with the epicenter (determined by USGS) located on the coast; or the conjugate mechanism, a compressional event on a steep reverse fault. It is unlikely that rupture along the high-angle reverse fault plane could explain the tsunami for several reasons: it would have generated larger coseismic displacements, possibly a fault break, in the immediate vicinity of the epicenter, i.e., on land near Serrano, which were not observed; the distribution of widely scattered aftershocks (whose depth resolution is very poor) is generally more consistent with the low-angle thrust fault geometry; finally, the azimuthal disparity between the strike of faulting and the direction of rupture [Kikuchi et al., 1998] would require significant down-dip propagation of the rupture, which would hamper tsunami generation. Nevertheless, we consider both geometries and compute the co-seismic vertical displacement field induced by fault rupture, using the analytical formalism of Mansinha and Smylie [1971] adapted to the case of a fault rupturing at an angle from the strike direction. This point has been ignored in previous studies, e.g., Matsuyama et al. [1999], who have used the 2nd source to model the effect of small-scale bathymetry on the amplification of the tsunami waves. The resulting field is then taken as the initial field for the hydrodynamic computation.
waves is only about 10 minutes from a source located 20 km offshore away from Sissano (an aftershock did take place at 09:02 GMT, 13 minutes after the mainshock, but it is much too small, $m_s = 4.4$, for its dislocation to be the tsunami source). The 10-minutes hiatus could be accounted for by a time delay between the mainshock and the triggering of the sediment slump.

- Several water waves were observed along the coast, the first one not always being the largest, which is not obtained using the proposed seismic sources.

- Bathymetric and seismic reflection surveys have detected, in an amphitheater-shaped depression of 50 km² (Fig. 1), the internal structure of a rotational slump with an estimated volume of 4 km³ and a few hundred meters thick, that has slid a few kilometers away from its presumed initial position [Tappin et al., 1999].

- T waves generated by the 09:02 aftershock were recorded at Wake Island [Okal et al., 1999], lasting close to one minute, an abnormally long duration for a seismic shock with $m_s = 4.4$, suggesting that the 09:02 event may be a landslide rather than a seismic dislocation.

Description of the Landslide Model

Modeling a landslide is then required. The volume of the landslide is taken as 4 km³, located in the above-mentioned depression (Fig. 3). The mechanism initiating the landslide is not studied and it is assumed that the whole mass suddenly loses its equilibrium and slides downslope under gravity forces. The landslide is treated as a fluid-like flow of a cohesionless granular material. Interfacial mixing with water is assumed to be negligible due to the short run-out distance and the interfacial shear is assumed to be small compared to the basal friction [Jiang and LeBlond, 1992; Rabinovich et al., 1999]. Since the slide thickness is much smaller than the characteristic slide length, mass and momentum conservation equations are depth-averaged over the thickness in a way similar to tsunami equations, which allows to ignore the precise mechanical behavior within the flow [Savage and Hutter, 1989]. The deformation is assumed to be essentially

Numerical Results for Seismic Sources

For both seismic sources, the maximum calculated water heights strongly underestimate the measured values (Fig. 2). In order to reproduce the observed values quantitatively, an amplification factor of 12 (1st mechanism) or 80 (2nd mechanism) has to be applied to the profiles shown on Figure 2. In turn, this would lead to increasing the slip on the dislocation by a similar factor, which is inconsistent with the seismic moment of the earthquake. Note the strong deficiency in amplitude for the 2nd source, which reflects the downward extension of the source, necessary to reconcile the epicenter geometry, the direction of propagation, the dip of the fault, and the location of the aftershocks. This argument, in favor of a large submarine landslide as a tsunamiogenic source, is supported by the following observations:

- Most reliable witnesses report the tsunami attack immediately following the main aftershock, i.e. 20 to 22 minutes after the mainshock, whereas the travel time of water
located in a thin boundary layer near the bed surface, as often observed in landslide deposits where pre-failure stratigraphy is preserved. Energy dissipation is then neglected within the flow and is limited to basal friction modeled by a Coulomb-type friction law. This law assumes a constant ratio of the shear stress to the normal stress at the base and involves a dynamic friction angle \(\phi \) between the rough bed and the mass. When the flow is close to rest, the fluid velocity is set to 0 as soon as the Coulomb force is larger than the algebraic sum of the forces due to gravity and height gradient. This approach, which allows the flow to stop, is more appropriate to debris avalanches than to slumps, composed of cohesive rocky material. Other approaches could be tested in the early stages of the collapse, the analytical model of Watts [1998] considering a solid block motion or the numerical model of Tinti et al. [1999] who consider the landslide as a rigid body structured in blocks interacting with each other. The resulting equations of mass and momentum conservation, written in a coordinate system linked to the topography, read:

\[
\frac{\partial (hv)}{\partial t} + \frac{\partial (hv, u)}{\partial x} + \frac{\partial (hv, v)}{\partial y} = 0
\]

\[
\frac{\partial (huv)}{\partial t} + \frac{\partial (huv, u)}{\partial x} + \frac{\partial (huv, v)}{\partial y} = \frac{1}{2} \kappa \frac{\partial}{\partial x} \left(gh^2 \cos \theta \right) + \gamma gh \sin \theta + F
\]

where \(\kappa = 1 - \rho_s/\rho_w \), \(F = -\kappa gh \cos \theta \tan \phi \) is the friction force, \(u = hv, \) is the depth-averaged velocity vector parallel to the bed, \(h \) is the slope thickness perpendicular to the slope, \(\rho_s \) and \(\rho_w \) are the water and sediments densities with a ratio \(\rho_s/\rho_w = 2 \), \(6x, y \) is the local steepest slope angle, \(\theta \), and \(\theta_s \) are the slope angles along \(x \)- and \(y \)-axis respectively. These hyperbolic equations are solved by the same numerical scheme as the one used in the tsunami model.

The associated water waves are calculated by solving shallow water equations. Sea-bottom time deformation induced by the landslide passage is introduced as a known forcing term \(\cos \theta \tan \phi \frac{du}{dt} \) in the mass conservation equation of the tsunami model. This term is appropriate in a shallow water context, when the horizontal scale of the disturbance is large compared to the water depth [Tinti et al., 1999].

Simulation of a Landslide-Generated Tsunami

At the source location, three major waves are produced by the landslide [Rozdzielewicz et al., 1997]. The water ahead of the front face of the slide is pushed away, creating a leading positive wave in the slide direction. The second wave is a large trough simultaneously created by the slide aspiration, and is followed by a large second positive wave created by the filling-in of the trough (Fig. 4). The three waves spread outward from the source as cylindrical waves. The 20-km stretch centered at Sissano lagoon entrance is affected only by the second positive wave, preceded by the trough (Fig. 4). It is worth noting that this wave does not spread out laterally (Fig. 1), due to energy focusing by a shallow shelf that extends offshore for 10 km from Sissano region [Matsuyama et al., 1999]. Beyond this coastal segment, the coast is reached by the first positive wave, with reduced amplitude due to geometric dispersion. It is followed by the trough and later by the second positive wave.

As expected, numerical tests show that water wave amplitudes are considerably reduced for the same volume when increasing the mean depth of the landslide. It is also
shown that the maximum inundation heights depend weakly on the landslide lateral position within the depression. Surprisingly, one major parameter controlling the run-up distribution is the friction law governing the landslide. Sensitivity tests were carried out by varying the basal friction angle φ, in the range determined by back-calculations from datasets of subaerial rock avalanches [Voight, 1979], i.e. from 5$^\circ$ to 20$^\circ$. Numerical results show that the calculated distribution is flatter than the observed one for small friction angles (Fig. 5). The smaller the friction angle, the higher the slide velocity, which produces in the generation area a larger first positive wave, that remains higher when reaching the coast outside Sissano. On the opposite, the 2nd positive wave is attenuated in the generation area and later in Sissano region. This attenuation is accounted for by a longer duration of the landslide, so that water aspiration by the slide interferes with the filling-in of the trough. The best fit to observations is obtained for $\varphi=12^\circ$, considering that the calculated water waves are reflected waves against the shoreline. In this case, the emplacement time for the leading edge of the landslide is slightly less than 2 minutes, the maximum vertical fall is about 500 m for a run-out distance of about 5 km. This distance, close to the observed one, is reduced to 2 km for $\varphi=17^\circ$ and exceeds 20 km for friction angles lower than 7$^\circ$.

Conclusion

The analysis of the 1998 Papua New Guinea event by means of numerical simulations confirms the large submarine landslide as the most probable origin of the tsunami. In other instances (Flores, 1992; Okushiri, 1993), local amplification of run-up has been attributed to localized underwater landslides of contained dimensions, triggered by the earthquake. This case differs in the much larger scale of the phenomenon, as well as in its nature as a slump. An important lesson learned from the PNG event is that catastrophic slides can be triggered by relatively moderate earthquakes, in the present case with a moment well below 10^{20} N-m, a figure heretofore often quoted as a threshold for regional tsunami hazard.

Acknowledgments. The authors are grateful to O. Pouliquen (IUSTI, Marseille University) for fruitful discussions concerning the friction laws, and to D. Tappin, Ph. Watts and SOPAC Institute for providing bathymetric data and estimates of the slide geometry.

References

Kawata, Y. et al., Tsunami in Papua New Guinea was as intense as first thought. *Eos Trans. AGU*, 80, 101, 104-105, 1999.

H. Hébert, P. Heinrich, A. Pitanesi, LDG/CEA, B.P. 12, 91680 Buryères-le-Châtel, France. (e-mail: heinrich@ldg.buryeres.cea.fr)

E. Okal, Department of Geological Sciences, Northwestern University, Evanston, IL 60208 (e-mail: emile@earth.nwu.edu)

(Received February 14, 2000; accepted May 19, 2000)