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Abstract—We present a detailed historical review of early

attempts to quantify seismic sources through a measure of the

energy radiated into seismic waves, in connection with the parallel

development of the concept of magnitude. In particular, we explore

the derivation of the widely quoted ‘‘Gutenberg–Richter energy–

magnitude relationship’’

log10 E ¼ 1:5Ms þ 11:8 ð1Þ

(E in ergs), and especially the origin of the value 1.5 for the slope.

By examining all of the relevant papers by Gutenberg and Richter,

we note that estimates of this slope kept decreasing for more than

20 years before Gutenberg’s sudden death, and that the value 1.5

was obtained through the complex computation of an estimate of

the energy flux above the hypocenter, based on a number of

assumptions and models lacking robustness in the context of

modern seismological theory. We emphasize that the scaling laws

underlying this derivation, as well as previous relations with gen-

erally higher values of the slope, suffer violations by several classes

of earthquakes, and we stress the significant scientific value of

reporting radiated seismic energy independently of seismic

moment (or of reporting several types of magnitude), in order to

fully document the rich diversity of seismic sources.

Key words: Radiated seismic energy, earthquake magnitudes,

historical seismicity, seismic scaling laws.

1. Introduction

This paper presents a historical review of the

measurement of the energy of earthquakes, in the

framework of the parallel development of the concept

of magnitude. In particular, we seek to understand

why the classical formula

log10 E ¼ 1:5Ms þ 11:8 ð1Þ

referred to as ‘‘Gutenberg [and Richter]’s energy–

magnitude relation’’ features a slope of 1.5 which is

not predicted a priori by simple physical arguments.

We will use Gutenberg and Richter’s (1956a) nota-

tion, Q [their Eq. (16) p. 133], for the slope of log10 E

versus magnitude [1.5 in (1)].

We are motivated by the fact that Eq. (1) is to be

found nowhere in this exact form in any of the tra-

ditional references in its support, which incidentally

were most probably copied from one referring pub-

lication to the next. They consist of Gutenberg and

Richter (1954) (Seismicity of the Earth), Gutenberg

(1956) [the reference given by Kanamori (1977) in

his paper introducing the concept of the ‘‘moment

magnitude’’ Mw], and Gutenberg and Richter

(1956b). For example, Eq. (1) is not spelt out any-

where in Gutenberg (1956), although it can be

obtained by combining the actual formula proposed

for E [his Eq. (3) p. 3]

log10 E ¼ 2:4m þ 5:8 ð2Þ

with the relationship between the ‘‘unified magni-

tude’’ m (Gutenberg’s own quotes) and the surface-

wave magnitude Ms [Eq. (1) p. 3 of Gutenberg

(1956)]:

m ¼ 0:63Ms þ 2:5; ð3Þ

neither slope (2.4 or 0.63) having a simple physical

justification. The same combination is also given by

Richter (1958, pp. 365–366), even though he pro-

poses the unexplained constant 11.4 instead of 11.8 in

(1), a difference which may appear trivial, but still

involves a ratio of 2.5. It is also given in the caption

of the nomogram on Fig. 2 of Gutenberg and Richter

(1956b), which does provide separate derivations of

(2) and (3). As for Gutenberg and Richter (1954) (the

third edition, generally regarded as definitive, of
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Seismicity of the Earth), the only mention of energy is

found in its Introduction (p. 10)

‘‘In this book, we have assumed for radiated

energy the partly empirical equation

log10 E ¼ 12 þ 1:8M: ð4Þ

This seems to give too great energy. At present

(1953), the following form is preferred:

log10 E ¼ 11 þ 1:6M}: ð5Þ

While Eq. (4), with Q ¼ 1:8, was derived from

Gutenberg and Richter (1942), Eq. (5), with Q ¼ 1:6,

was apparently never formally published or analyti-

cally explained.

The fact that none of the three key references to

‘‘Gutenberg and Richter’s energy–magnitude rela-

tion’’ actually spells it out warrants some research

into the origin of the formula, from both historical

and theoretical standpoints. In order to shed some

light on the origin of (1), and to recast it within

modern seismic source theory, this paper explores the

development of the concept of earthquake energy and

of its measurement, notably in the framework of the

introduction of magnitude by Richter (1935). In

particular, we examine all of Gutenberg’s papers on

the subject, using the compilation of his bibliography

available from his obituary (Richter 1962).

2. The Modern Context and the Apparent ‘‘Energy

Paradox’’

Understanding the evolution of the concept of

magnitude and the attempts to relate it to seismic

energy must be based on our present command of

seismic source theory. In this respect, this section

attempts to provide a modern theoretical forecast of a

possible relation between magnitude and energy. We

base our discussion on the concept of double couple

M introduced by Vvedenskaya (1956), and later

Knopoff and Gilbert (1959) as the system of forces

representing a seismic dislocation, its scalar value

being the seismic moment M0 of the earthquake.

Note that we consider here, as the ‘‘energy’’ of an

earthquake only the release of elastic energy stored

during the interseismic deformation of the Earth, and

not the changes in gravitational and rotational kinetic

energy resulting from the redistribution of mass

during the earthquake, which may be several orders

of magnitude larger (Dahlen 1977).

2.1. The Energy Paradox

We first recall that magnitude was introduced by

Richter (1935) as a measure of the logarithm of the

amplitude of the seismic trace recorded by a torsion

instrument at a distance of 100 km, and thus essen-

tially of the ground motion generated by the

earthquake. In the absence of source finiteness

effects, and given the linearity of the equations of

mechanics governing the Earth’s response [traceable

all the way to Newton’s (1687) ‘‘f = m a’’], that

ground motion, A in the notation of most of

Gutenberg’s papers, should be proportional to M0,

and hence any magnitude M should grow like

log10 M0. This is indeed what is predicted theoreti-

cally and observed empirically, for example for the

surface-wave magnitude Ms below about six (Geller

1976; Ekström and Dziewoński 1988; Okal 1989).

In most early contributions, it was generally

assumed that the energy of a seismic source could

be computed from the kinetic energy of the ground

motion imparted to the Earth by the passage of a

seismic wave, which would be expected to grow as

the square of the amplitude of ground motion. Since

the concept of magnitude measures the logarithm of

the latter, this leads naturally to Q ¼ 2, as featured by

earlier versions of Eq. (1) (Gutenberg and Richter

1936).

By contrast, using the model of a double-couple

M, the seismic energy E released by the source is

simply its scalar product with the strain e released

during the earthquake. The absolute value of the

strain should be a characteristic of the rock fracturing

during the earthquake, and as such an invariant in the

problem, so that E should be proportional to M0.

Again, in the absence of source finiteness effects, the

linearity between seismic source and ground motion

(‘‘f = m a’’) will then result in E being directly

proportional to ground motion, and hence in a slope

Q ¼ 1 in Eq. (1).

We thus reach a paradox, in that the two above

arguments predict contradictory values of Q. The

highly quoted Gutenberg and Richter relationship (1),
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which uses the intermediate value Q ¼ 1:5, may

appear as a somewhat acceptable compromise, but

satisfies neither interpretation. Thus, it deserves full

understanding and discussion.

2.2. A Modern Approach

The origin of this apparent, and well-known,

‘‘energy paradox’’ can be traced to at least three

effects:

(i) Most importantly, the proportionality of energy to

the square of displacement holds only for a

monochromatic harmonic oscillator (with the

additional assumption of a frequency not varying

with size), while the spectrum of seismic ground

motion following an earthquake is distributed

over a wide range of frequencies, and thus the

resulting time-domain amplitude at any given

point (which is what is measured by a magnitude

scale) is a complex function of its various spectral

components;

(ii) Because of source finiteness (‘‘a large earthquake

takes time and space to occur’’), destructive

interference between individual elements of the

source causes ground motion amplitudes mea-

sured at any given period to grow with moment

slower than linearly, and eventually to saturate

for large earthquakes (Geller 1976);

(iii) Ground motion can be measured only through

the use of instruments acting as filters; while

some of them could in principle be so narrow as

to give the seismogram the appearance of a

monochromatic oscillator, justifying assumption

(i), the inescapable fact remains that most of the

energy of the source would then be hidden

outside the bandwidth recorded by the instru-

ment. In parallel, ground motion can be

measured only at some distance from the source,

and anelastic attenuation over the corresponding

path will similarly affect the spectrum of the

recorded seismogram.

In modern days, the effect of (iii) is vastly reduced by

the availability of broadband instrumentation. Using

modern theory, it is possible to offer quantitative

models of the concept of finiteness (ii), as first

described by Ben-Menahem (1961), and, when inte-

grating it over frequency [which takes care of (i)], to

reconcile quantitatively the paradox exposed above.

In practice, seismic magnitudes have been, and

still are, measured either on body waves, or on

surface waves (exceptionally on normal modes). As

discussed by Vassiliou and Kanamori (1982), the

energy radiated in P and S wavetrains can be written

as

EBody ¼ FB � M2
0

t3
0

ð6Þ

where t0 represents the total duration of the source

(the inverse of a corner frequency), which under

seismic scaling laws (Aki 1967) is expected to grow

like M
1=3
0 , and FB is a combination of structural

parameters (density, seismic velocities) and of the

ratio x of rise time to rupture time, which are

expected to remain invariant under seismic scaling

laws. As a result, E=M0 is also expected to remain

constant, its logarithm being estimated at �4:33 by

Vassiliou and Kanamori (1982), and �4:90 by

Newman and Okal (1998). Extensive datasets com-

piled by Choy and Boatwright (1995) and Newman

and Okal (1998) have upheld this invariance of

log10ðE=M0Þ with average values for shallow earth-

quakes of � 4:80 and � 4:98, respectively, a result

later upheld even for microscopic sources by Ide and

Beroza (2001).

In the case of surface waves, we have shown

(Okal 2003) that the energy of a Rayleigh wave can

be similarly expressed as

ERayleigh ¼ FR � x3
cM2

0 ; ð7Þ

where xc is a corner frequency, not necessarily equal

to its body wave counterpart, but still expected to

behave as M
�1=3
0 [see Eq. (A8) of Okal (2003)], and

FR is a combination of structural parameters and

Rayleigh group and phase velocities, which can be

taken as constant. While we argue in Okal (2003) that

the energy carried by Rayleigh waves represents only

a small fraction (less than 10 %) of the total energy

released by the dislocation, the combined result from

(6) and (7) is that energy, when properly measured
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across the full spectrum of the seismic field, does

grow linearly with the seismic moment M0.

As for the growth of magnitudes, Geller (1976)

has used the concept of source finiteness heralded by

Ben-Menahem (1961) to explain how any magnitude

measured at a constant period T starts by being

proportional to log10 M0 for small earthquakes, and

then grows slower with moment, as the inverse of the

corner frequencies characteristic of fault length, rise

time, and fault width become successively compara-

ble to, or longer than, the reference period T. Under

Geller’s (1976) model, the slope of M versus log10 M0

should decrease to 2/3, then 1/3, and finally 0, as any

magnitude measured at a constant period reaches an

eventual saturation. The latter is predicted and

observed around 8.2 for the 20-s surface-wave

magnitude Ms, and predicted around 6.0 for mb, if

consistently measured at 1 s (occasional values

beyond this theoretical maximum would reflect

measurements taken at periods significantly longer

than the 1-s standard). Figure 1 plots this behavior

(mb as a long-dashed blue curve, Ms in short-dotted

red), as summarized by the last set of (unnumbered)

equations on p. 1520 of Geller (1976). Because of the

straight proportionality between E and M0, the

vertical axis also represents log10 E, except for an

additive constant.

The conclusion of these theoretical remarks is that

Q is expected to grow with earthquake size, from its

unperturbed value of 1 in the domain of small sources

unaffected by finiteness, to 1.5 under moderate

finiteness, and to a conceptually infinite value when

M has fully saturated. Note that these conclusions

will hold experimentally only under two conditions:

(1) that the energy should be computed (either from

body or surface waves) using an integration over the

full wave packet, in either the time or frequency

domain, these two approaches being equivalent under

Parseval’s theorem; and (2) that magnitudes for

events of all sizes should be computed using the same

algorithms, most importantly at constant periods.

3. The Quest for Earthquake Energy: A Timeline

In this general framework, we present here a

timeline of the development of measurements of

earthquake energy, and of the refinement of the

concept of magnitude. The discussion of the critical

papers by Gutenberg and Richter which underlie

Eq. (1) will be reserved for Sect. 4 and further

detailed in the Appendix; contributions from other

authors will be discussed here.

1. To our knowledge, the first attempt at quantify-

ing the energy released by an earthquake goes

back to Mendenhall (1888), who proposed a

value of 3:3 � 1021 erg (2:4 � 1014 ft lbs) for the

1886 Charleston earthquake. This figure is abso-

lutely remarkable, given that modern estimates

of the moment of the event are around (1–10)

�1026 dyn cm (Johnston 1996; Bakum and

Hopper 2004), which would suggest an energy

of about (1.2–12) �1021 erg, according to global

scaling laws (Choy and Boatwright 1995; New-

man and Okal 1998). Mendenhall’s (1888)

calculation was based on Lord Kelvin’s

Magnitude 
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Figure 1
Variation of body-wave magnitude mb (long dashes, blue) and

surface-wave magnitude Ms (short dots, red) with seismic moment

M0, predicted theoretically from Eqs. (16) and (17) (Geller 1976).

Superimposed in solid green is the relationship (18), casting values

of M0 into the scale Mw (Kanamori 1977)
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description of the energy of a ‘‘cubic mile’’ of

vibrating matter moving with the wave front

(Thomson 1855), a concept nowadays expressed

as an energy flux (Wu 1966; Boatwright and

Choy 1986). However, Mendenhall uses grossly

inadequate estimates of particle velocities (on

the order of 15 cm/s), and of the cross section

and ‘‘thickness’’ of the wavefront, taken as 104

square miles and 1 mile, respectively. Thus the

surprising accuracy of his result stems from the

fortuitous compensation of fatally erroneous

assumptions.

2. By contrast, the first calculation of the energy

released by an earthquake whose methodology

would be upheld under present standards goes

back to Reid (1910). In his comprehensive report

on the 1906 San Francisco earthquake, Reid

proposed a value of 1:75 � 1024 erg, based on an

estimate of the forces necessary to offset the

strain accumulated around the fault. This number

is about 10 times too large given generally

accepted values of the event’s seismic moment

(Wald et al. 1993), but its computation is

nevertheless remarkable.

A year later, Reid embarked on measuring the

energy of 12 additional earthquakes from an

analysis of the areas of their Rossi–Forel inten-

sity III isoseismals, scaled to that of the 1906 San

Francisco earthquake, an idea originally found in

Milne (1898). Reid does comment on the

apparent scatter of his results, and in a truly

visionary discussion, identifies probable sources

of errors which would be described in modern

terms as source radiation patterns, departure

from earthquake scaling laws, and even the

preferential attenuation of shear waves by the

asthenosphere (Reid 1912).

3. The next reference to the computation of an

earthquake’s energy seems to be the work of

Golitsyn (1915) on the Sarez earthquake of 18

February 19111 in present-day Tajikistan, which

was later assigned a magnitude of 73
4

by Guten-

berg and Richter (1954). Golitsyn’s (1915)

computation is important, because it is the first

one making use of a recorded seismogram. It was

then revised and discussed, first by Klotz (1915)

and later by Jeffreys (1923, 1929), and it became

part of the small original dataset used by

Gutenberg and Richter (1936) in their first

attempt to relate magnitude to energy [see (6)

in this list]. An extensive study of the Sarez

earthquake was recently published by Ambra-

seys and Bilham (2012), who recomputed a

surface-wave magnitude Ms ¼ 7:7, but did not

perform any waveform analysis. These numbers

would suggest a moment of about

5 � 1027 dyn cm, under the assumption that the

event follows scaling laws. We were able to

obtain an independent, modern, estimate of the

moment of the earthquake by applying the Mm

algorithm (Okal and Talandier 1989, 1990) to

original Love and Rayleigh wavetrains recorded

at De Bilt and Uppsala, yielding an average

value of M0 ¼ 3 � 1027 dyn cm. As detailed by

Ambraseys and Bilham (2012), the earthquake

was accompanied by a catastrophic landslide,

later surveyed by the Imperial Russian Army at

an estimated volume of 2.5–3.5 km3, which

dammed the Murgab River, creating Sarez Lake,

a 17-km3 reservoir (Shpil’ko 1914, 1915); inci-

dentally, the potential failure of the resulting

natural Usoi Dam remains to this day a signif-

icant hazard in the region (Lim et al. 1997;

Schuster and Alford 2004), especially in view of

recent large-scale seismic activity in its neigh-

borhood (Elliott et al. 2017; Negmatullayev

et al. 2018).

Golitsyn’s purpose in computing the energy of

the seismic waves was to address the question of

the causality of the landslide, i.e., was it a result

of the earthquake or the opposite, the argument

being that, if the slide was caused by the

earthquake, it should have only a fraction of

the seismic energy released. Golitsyn’s (1915)

work constituted a significant improvement on

Mendenhall’s (1888) in that he used actual

seismograms (in this case Rayleigh waves at

Pulkovo) to compute an energy flux, which he

then integrated over the observed duration of the

wavetrain, and, mistakenly as noticed by Jeffreys

1 In the Gregorian calendar (‘‘new style’’). The date is 5

February in the Julian calendar (‘‘old style’’) used in the Russian

Empire at the time.

Vol. 176, (2019) Energy and Magnitude: A Historical Perspective 3819



(1923), over the lower focal hemisphere, to

derive the energy released at the source. Golitsyn

(1915) obtained a value of 4:3 � 1023 erg, com-

parable to his estimate of (2–6) �1023 erg for the

energy of the rockslide, and concluded that the

slide was ‘‘not the consequence, but the cause of

the earthquake.’’ Once again, and remarkably,

his value of the seismic energy is not unreason-

able, being only ten times larger than expected

under the assumption of scaling laws (Boat-

wright and Choy 1986; Newman and Okal 1998)

applied to our estimate of the seismic moment

(3 � 1027 dyn cm), but as we will show, this

remains a coincidence, resulting from a number

of compensating errors.

In what amounts to a translation of Golitsyn’s

paper, Klotz (1915) revised the seismic energy

estimate slightly upwards, to 7 � 1023 erg, but

offered no definitive comment on the matter of

the possible trigger. By contrast, Jeffreys (1923)

argued that Golitsyn’s (1915) computation was

erroneous, since he had not taken into account

the decay of Rayleigh wave amplitudes away

from the Earth’s surface, which invalidates the

integration over the focal hemisphere. Having

corrected the calculation, and performed a

cylindrical, rather than spherical, integration

around the focus, Jeffreys (1923) came up with

a considerably lower value of the seismic energy

of the Rayleigh waves of only 1:8 � 1021 erg. To

this he added a much smaller contribution from

the S waves, estimated at 9 � 1019 erg.

In the context of modern theories and energy

computations, we can point to a number of fatal

shortcomings in Jeffreys’ (1923) arguments, the

most obvious one being that he assigns more

energy to Rayleigh waves than to S waves.

Indeed, we now know that most of the energy

radiated by a seismic source is initially carried

by high-frequency S waves, but those attenuate

so fast in the far field that their contribution must

be calculated by scaling that of the less attenu-

ated P waves (Boatwright and Choy 1986); note

that Jeffreys (1923) neglects anelastic attenua-

tion altogether. Furthermore, he uses the model

of a harmonic oscillator (despite expressing

some reservations in this respect), whereas

modern computations using digital data show

that the major contribution to the energy integral

at teleseismic distances is usually around 1 Hz.

In his surface wave calculation, Jeffreys (1923)

uses a single period of 14 s, and by ignoring

other spectral contributions, once again under-

estimates the final energy of the wave, by a

factor of about six with respect to the theoretical

value predicted for an earthquake of that size

[Okal (2003); Eq. (45), p. 2209]. In short,

Golitsyn (1915) was grossly overestimating the

Rayleigh energies, but we now know that they

carry only a fraction of the seismic energy

released, so that in the end, his result might have

been correct, while Jeffreys (1923) was under-

estimating both Rayleigh and S energies, by

considering only single frequencies. A scientific

exchange between Golitsyn and Jeffreys would

certainly have been enlightening, but unfortu-

nately, Prince Golitsyn died of natural causes on

17 May (n.s.) 1916, aged only 54.

Incidentally, we now understand that the whole

argument about causality was totally flawed,

since the two phenomena considered (the earth-

quake and the rockslide) express the release of

two forms of potential energy of a different

nature, one elastic and the other gravitational. If

one phenomenon simply triggers the other, the

relative amounts of energy released by the two

processes are unrelated, since they come from

different energy reservoirs.2 As such, an earth-

quake could conceivably trigger a landslide more

energetic than itself (this is possibly what

happens during ‘‘orphan’’ slides for which the

triggering mechanism is simply too small to be

detected), and the converse might also be

envisioned, i.e., a landslide triggering a more

energetic earthquake in a tectonically ripe envi-

ronment.

Indeed, the interpretation of the 1911 Sarez

earthquake by Golitsyn (1915) and Jeffreys

(1923) as being due to the rockslide was

questioned both by Oldham (1923), who argued

that the earthquake source was normal (and in

2 These remarks illustrate scientifically the popular expression

‘‘the straw that broke the camel’s back.’’
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particular could not be superficial) on account of

its isoseismal distribution and of its aftershock

sequence, and by Macelwane (1926), based on a

comparison with the case of the Frank, Alberta

slide of 29 April 1903, for which no evidence of

triggered seismicity could be found (admittedly

for a significantly smaller, if still massive,

rockslide, and during the dawn years of instru-

mental seismology). Jeffreys (1923) discusses in

considerable detail the transfer of energy from a

small body (the slide) falling on a big one (the

Earth), and proposes a figure of 1/300 for its

efficiency. His approach is correct only under his

assumption ‘‘that the blow to the ground caused

by the fall might have been the cause of the

seismic disturbance,’’ and thus that the elastic

energy carried by the seismic waves was trace-

able to the deformation of the Earth upon the

impact of the slide, and not to the release of

tectonic strain independently accumulated dur-

ing the interseismic cycle. The low efficiency of

this mode of triggering was verified in the case

of the collapse of the World Trade Center on 11

September 2001, for which Kim et al. (2001)

proposed a value of between 10�4 and 10�3.

Incidentally, those authors also verified that the

character of the seismic waves and the geometry

of the spreading area differed significantly from

those of a traditional earthquake, thus supporting

in retrospect Oldham’s (1923) criticism of

Golitsyn’s model for the 1911 Sarez events.

4. A few years later, in the second edition of The

Earth, Jeffreys (1929) listed several additional

values of earthquake energies, apparently all

obtained from S waves: 1021 erg for the Montana

earthquake of 28 June 1925, only 10 times

smaller than suggested by (1) based on the

magnitude of 63
4

later assigned by Gutenberg and

Richter (1954); 5 � 1016 erg for the much

smaller Hereford, England earthquake of 15

February 1926, deficient by a factor of 200

when applying (1) to the earthquake’s present

magnitude estimate, ML ¼ 4:8 (Musson 2007);

and about 1019 erg for the Jersey event of 30 July

1926, for which no definitive magnitude is

available. He also lists a value of 5 � 1016 erg

for the Oppau, Germany explosion of

ammonium-nitrate-based fertilizer on 21

September 1921 (Wrinch and Jeffreys 1923),

although we would nowadays question the

concept of using S waves to quantify the source

of an explosion.

5. In 1935, Richter published his landmark paper

introducing the concept of magnitude, in which

he cautioned that ‘‘[its] definition is in part

arbitrary; an absolute scale, in which the num-

bers referred directly to shock energy [...]

measured in physical units, would be preferable’’

(Richter 1935). Notwithstanding this disclaimer,

Richter could not resist the temptation of relating

his newly defined magnitude scale to physical

units, using Jeffreys’ (1929) energy estimate for

the 1925 Montana earthquake. Since the latter

was outside the domain of his original study

(limited to California and Nevada), Richter

assigned it M ¼ 7:5 based on an interpretation

of its isoseismals, and proceeded to scale mag-

nitude to energy. While not expressed verbatim,

the relation

log10 E ¼ 2M þ 6 ð8Þ

can be inferred from the several examples dis-

cussed on pp. 26–27 of Richter (1935). The slope

Q ¼ 2 in Eq. (8) is not explained, probably

because it looked obvious to Richter that energy

should scale as the square of amplitude, under the

model of a harmonic oscillator.

6. In collaboration with Richter, Gutenberg wasted

no time expanding the concept of magnitude, and

within one year the two Caltech scientists had

published the third in their series of ‘‘On Seismic

Waves’’ papers (Gutenberg and Richter 1936), in

which they extended the concept of magnitude to

teleseismic distances and thus to earthquakes

worldwide, using exclusively surface waves. In

parallel, they proposed the first formal relation

between magnitude and energy [their Eq. (15)

p.124]:

log10 E ¼ 2M þ log10 E0; ð9Þ

E0 being the energy of a shock of magnitude 0,

‘‘the smallest ones recorded’’ (of course we now

know that events of negative magnitude can exist

and be recorded). They also laid the foundations
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for the extension of the magnitude concept to

teleseismic distances, in the process revising down

the magnitude of the 1925 Montana earthquake to

6.8 [later transcribed as 63
4

in Gutenberg and

Richter (1954)]. This has the effect of increasing

the constant 6 in (8) [or E0 in (9)], but Gutenberg

and Richter (1936) do not publish a definitive

value of E0, indicating rather that it ranges between

107 and 3 � 108 erg. On the other hand, they

specifically justify the slope Q ¼ 2 in (9), stating

‘‘Since the magnitude scale is logarithmic in the

amplitudes, doubling the magnitudes gives a scale

logarithmic in the energies.’’

Note that, up to this stage, Gutenberg and Richter

do not compute their own energies based on any

personal analytical approach, but rather use pub-

lished values, e.g., from Reid (1910) or Jeffreys

(1929); while they write ‘‘Energies have been

found for earthquakes by many investigators using

different methods,’’ the modern reader is left at a

loss to figure out exactly who these scientists were

and what their methods might have been.

7. This situation apparently changes in the next few

years, resulting in the first compilation of

magnitudes derived from individual measure-

ments of ground motion, as part of the first

version of Seismicity of the Earth, published as a

‘‘Special Paper’’ of the Geological Society of

America (Gutenberg and Richter 1941), although

earthquakes remain grouped in ‘‘magnitude

classes,’’ from a (M � 5) to e (M � 8).

8. Gutenberg and Richter’s (1942) next paper on

the subject makes a number of fundamental

breakthroughs. A critical discussion of the ana-

lytical parts of this paper will be given in

Sect. 4.1. We present here only the general

milestones in that contribution. First, the authors

work out a detailed expression of the energy of

the source based on a model of the vertical

energy flux at the epicenter, expressed as a

function of the maximum acceleration a0

observed above a point source buried at depth

h [their Eq. (27) p. 178]:

log10 E ¼ 14:9 þ 2 log10 h þ log10 t0

þ 2 log10 T0 þ 2 log10 a0:
ð10Þ

where t0 is the duration of the signal, and T0 its

(dominant) period. In this respect, and as indi-

cated by the title of their paper, the authors are

clearly motivated by relating magnitude to

maximum intensities in the epicentral area,

which are generally related to accelerations,

rather than displacements. Similarly, the exper-

imental data available to them in epicentral areas

came primarily in the form of strong-motion

accelerograms, hence the emphasis on accelera-

tion a0, rather than displacement A0; in (10).

Second, and perhaps more remarkably, they

propose that parameters such as the duration t0

or the prominent period T0 of the wavetrains are

not constant but rather vary with the size of the

earthquake. As such, their study represents the

first introduction of the concept of a scaling law

for the parameters of a seismic source. The

authors suggest that log10 t0 varies as 1
4

M [their

Eq. (28)], albeit without much justification. In

modern terms, t0 would be called a source

duration, controlled by the propagation of rup-

ture along the fault, and hence expected to grow

like M
1=3
0 , which would be reconciled with

Gutenberg and Richter’s (1942) Eq. (28) if

log10 M0 were to grow like 3
4

M, an unlikely

behavior. The fundamental empirical observa-

tion in Gutenberg and Richter (1942) is that the

maximum acceleration a0 at the epicenter grows

slower with magnitude than the amplitude of

ground motion used to compute M [their

Eq. (20) p. 176]:

M ¼ 2:2 þ 1:8 log10 a0; ð11Þ

from which they infer a slope of 0.22 between

log10 T0 and M [their Eq. (32), p. 179]. T0

represents the dominant period of an accelero-

gram at the epicenter, which in modern terms

may be related to the inverse of a corner

frequency, itself controlled by a combination of

source duration and rise time, and thus T0 would

be expected to grow like M
1=3
0 (Geller 1976),

which is reconciled with Eq. (32) of Gutenberg

and Richter (1942) if log10 M0 were to grow like
2
3

M, again an unlikely behavior. When substitut-

ing the dependence of t0 and T0 with M into their
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Eq. (27), the authors finally obtain their Eq. (34)

p. 179:

log10 E ¼ 8:8 þ 2 log10 h þ 1:8M ð12Þ

as a replacement for the previous version

featuring a slope Q ¼ 2 (Gutenberg and Richter

1936). Note that this formula would correspond

to (10) for h ¼ 40 km, which is significantly

greater than the typical depth of the Southern

California earthquakes that constituted the data-

set used by the authors for most of their

investigations, and would even be greater than

the probable depth of focus of most of their

teleseismic events. They correctly assign the

reduction in slope to issues nowadays described

as evolving from source finiteness, even though

these effects remain underestimated by modern

standards.

Gutenberg and Richter (1942) then proceed to

estimate (only to the nearest order of magnitude)

energies for 17 large earthquakes, based on

intensity reports at their epicenter, or on their

radius of perceptibility, both approaches being

related to epicentral ground acceleration, and the

latter reminiscent of Milne’s (1898) methodol-

ogy. The values proposed are significantly

overestimated (reaching 1026 to 1027 erg), which

may result from underestimating the effect of

source finiteness, ignoring in particular the

existence of several corner frequencies, a phe-

nomenon leading to a saturation of acceleration

[ground accelerations in excess of one g are not

observed systematically for great earthquakes,

but rather in certain tectonic environments in the

case of even moderate, but ‘‘snappy,’’ shocks

(e.g., Fry et al. 2011)]. As a result, the growth of

E with M [the slope Q ¼ 1:8 in Eq. (12)]

remains too strong, and this eventually overpre-

dicts energy values, especially for large events.

However, from a relative standpoint, it is

remarkable that, in addition to the truly great

earthquakes in Assam (1897) and San Francisco

(1906), the three events given the strongest

energies by Gutenberg and Richter (1942) are the

shocks of 1926 off Rhodos, 1939 in Chillán,

Chile, and 1940 in Vrancea, Romania. The

Chillán event has been shown by Okal and

Kirby (2002) to feature an anomalously high

energy-to-moment ratio, a property expected to

be shared by the other two on account of their

location as intermediate-depth intraslab events

(Radulian and Popa 1996; Ambraseys and

Adams 1998). Finally, and in retrospect, a

significant problem with the multiple regression

(10) underlying Gutenberg and Richter’s (1942)

model is that it predicts a logarithmic disconti-

nuity in E as the source reaches the surface

(h ! 0). This limitation reflects the simplified

model of a point source, which is rendered

invalid as soon as the fault’s width W and length

L become comparable to h.
9. In 1945, Gutenberg published three papers

establishing the computation of magnitudes from

surface and body waves on a stronger operational

basis. First, in Gutenberg (1945a), he formalized

the calculation of a surface-wave magnitude Ms

by introducing the distance correction

1:656 log10 D [his Eq. (4)]. This slope, still of

an empirical nature, is significantly less than

suggested by Gutenberg and Richter (1936); for

example, the 42 points at distances less than 150�

on their Fig. 6 (p. 120) regress with a slope of

ð�2:08 � 0:09Þ log10 D (or ð�1:94 � 0:15Þ for

D\55�). The new slope (rounded to 1.66) was to

be later inducted (albeit after considerable

debate) into the Prague formula for Ms (Vaněk

et al. 1962); while never derived theoretically, it

was justified as an acceptable empirical fit to a

modeled decay of 20-s Rayleigh wave ampli-

tudes with distance (Okal 1989).

In the second paper, Gutenberg (1945b) used the

concept of geometrical spreading, initially

described by Zöppritz [and written up as

Zöppritz et al. (1912) following his untimely

death], to extend to teleseismic distances the

calculation of an energy flux pioneered at the

epicenter by Gutenberg and Richter (1942), thus

defining a magnitude from the body-wave phases

P, PP and S. The most significant aspects of this

paper are (1) the difficulty of the author to obtain

both local and distant values of magnitudes for

the same event; (2) the necessity to invoke

station corrections reflecting site responses; (3)
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the relatively large values of the periods

involved (up to 7 s even when considering only

P phases); and (4) the introduction of correction

terms for magnitudes larger than seven, clearly

related to the effects of source finiteness.

In the third paper, Gutenberg (1945c) attacked

the problem of deep earthquakes, and produced

(for P, PP, and S) the first versions of the

familiar charts for the distance–depth correction,

generally referred to as QðD; hÞ, but as AðD; hÞ in

early papers,3 to be applied to the logarithm of

ground motion amplitude. After this correction

was significantly adjusted by Gutenberg and

Richter (1956b) [their Fig. 5, as compared with

Gutenberg’s (1945c) Fig. 2], it was to be

retained in the Prague formula for mb (Vaněk

et al. 1962), and has remained to this day the

standard for the computation of magnitudes from

P waves. By imposing that the same earthquake

should have the same magnitude when measured

at different distances, it was possible, at least in

principle, to obtain empirically the variation of

QðD; hÞ with distance, and in particular to lock

the body-wave magnitude scale with Richter’s

(1935) original one. However, the dependence

with depth obviously required a different

approach. In the absence of a physical represen-

tation of the source by a system of forces,

Gutenberg (1945c) elected to impose that shal-

low and deep earthquakes of similar magnitude

should have the same radiated energy, which

allowed him to obtain the first version of the

AðD; hÞ chart (his Fig. 2), through a generaliza-

tion of the concept of geometrical spreading. We

now understand that this approach tacitly

assumes a constant stress drop Dr, which may

not be realistic for deep sources at the bottom of

subduction zones.

In hindsight, Gutenberg’s (1945c) approach

suffered from ignoring the presence of the low-

velocity zone in the asthenosphere, as well as of

the seismic discontinuities in the transition zone,

which result in significant distortion of slowness

as a function of distance, and hence of its

derivative controlling geometrical spreading. In

addition, the attenuation structure of the mantle

was at the time little if at all understood, which

later prompted Veith and Clawson (1972) to

propose a new, more streamlined, distance–depth

correction, PðD; hÞ, based on a more modern

representation of attenuation as a function of

depth; however, they elected to use a structure

derived from Herrin’s (1968) tables, which does

not include mantle discontinuities, even though

the latter were documented beyond doubt by the

end of the 1960s (e.g., Julian and Anderson

1968). Note finally that Gutenberg

(1945b, Eq. 18, p. 66; 1945c, Eq. (1), p. 118)

introduces the ratio A/T rather than A in the

computation of mB, presumably motivated by the

quest for a closer relation between magnitude

and energy, the latter involving ground velocity

rather than displacement in its kinetic form. This

change from A to A/T is potentially very

significant, since T is expected to vary with

earthquake size.

10. The next decade saw the compilation of the

definitive version of Seismicity of the Earth,

published as a monograph in two subsequent

editions (Gutenberg and Richter 1949, 1954), in

which earthquakes are assigned individual mag-

nitudes. In their introduction to the final edition

(p. 10), the authors argued that the value

Q ¼ 1:8, derived in Gutenberg and Richter

(1942) and used in the first one, overestimated

energies, and suggested the lower value Q ¼ 1:6;

however, they did not revise their discussion of

energy, perhaps because they felt that their new

formula (5), which they had not yet formally

published (and eventually would never publish),

was itself not definitive.

11. In the meantime, the scientific value of the

concept of magnitude as a quantification of

earthquake sources had become obvious to the

seismological community, and many investiga-

tors developed personal, occasionally competing,

algorithms, and more generally offered com-

ments on Gutenberg and Richter’s ongoing work.

Among them, Bullen (1953) suggested that

3 The correction is unrelated to the slope Q between magni-

tude and energy, and to the amplitude of ground motion A used to

measure magnitudes. It also bears no relation to the quality factor

Q later defined as the inverse of anelastic attenuation.
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energies derived from (12) were too large for the

largest magnitudes, which would go in the

direction of the reduction of Q. On the other

hand, following Jeffreys’ (1923) criticism of

Golitsyn’s (1915) calculation of the energy of

Rayleigh waves, Båth (1955) proposed to correct

it by restricting the vertical cross-section of the

teleseismic energy flux (which he evaluates at the

Earth’s surface) to a finite depth, H, which he

took as 1.1 times the wavelength K. While this

approach is indeed more sound than Golitsyn’s, it

is still limited to Rayleigh waves, and thus does

not quantify the contribution of body waves,

even though Båth (1955) does state that the latter

is probably important. Finally, his empirically

derived slope Q reverts to the value 2, presum-

ably because of his exclusive use of narrowband

instruments, essentially converting the Earth’s

motion into that of a harmonic oscillator. Sim-

ilarly, Di Filippo and Marcelli (1950) obtained

Q ¼ 2:14 from a dataset of Italian earthquakes

using Gutenberg and Richter’s (1942) methodol-

ogy, this higher value reflecting the departure of

the dominant period T from the scaling proposed

by Gutenberg and Richter. Sagisaka (1954)

attempted to reconcile Reid’s (1910) approach,

based on integrating the energy of the elastic

deformation, with Gutenberg and Richter’s

(1942) values derived from magnitudes in the

case of several Japanese earthquakes (both

shallow and deep), and noticed that the latter

were consistently excessive, e.g., by a factor of at

least 100 in the case of the great Kanto earth-

quake of 1923. We have proposed (Okal 1992) a

seismic moment of 3 � 1028 dyn cm for that

event, which under modern scaling laws, would

suggest an energy of about 4 � 1023 erg, in

general agreement with Sagisaka’s (1954) figure,

and confirming that (12) overestimates energies,

at least for large events.

12. The year 1956 sees no fewer than three new

publications on the subject by Gutenberg and

Richter. Gutenberg (1956) and Gutenberg and

Richter (1956b) constitute in particular their last

efforts at trying to reconcile the various magni-

tude scales they had arduously built over the

previous 20 years, into a single ‘‘unified’’

magnitude. In this framework, they proceed to

develop empirical relations between magnitude

scales (and hence with energy) which become

more complex, and in particular involve nonlin-

ear terms. We now understand that, because they

were measuring different parts of the seismo-

grams at different periods and the scaling laws

underlying the concept of a unified magnitude

were distorted differently [different corner fre-

quencies apply to different wavetrains (Geller

1976)], it was impossible for them to find a

simple relation between magnitudes that would

apply for all earthquake sizes. For example, we

note that the relation proposed in Eq. (20), p. 134

of Gutenberg and Richter (1956a):

log10 E ¼ 9:4 þ 2:14M � 0:054M2 ð13Þ

would regress with a slope Q ¼ 1:6 between

magnitudes 1 and 9, but only Q ¼ 1:4 between

the more usual values of 5.5 and 8.5. We note

that Gutenberg (1956) elects to align a ‘‘unified’’

magnitude m on his body-wave mB. This may

sound surprising since we now understand that,

being higher frequency than a surface-wave

magnitude, mB is bound to suffer stronger

distortion from the effect of source finiteness,

and saturate earlier (Geller 1976). However, as

suggested in Gutenberg and Richter (1956a),

Gutenberg may have been motivated by the goal

of matching Richter’s (1935) initial scale, which

would be regarded today as a local magnitude

ML, measured at even higher frequencies, and

therefore more closely related to a body-wave

scale. Also, Richter’s initial magnitude used

torsion records with deficient response at longer

periods.

In many respects, the third paper (Gutenberg and

Richter 1956a) [whose preparation apparently

predated Gutenberg and Richter (1956b)] stands

in a class by itself, and constitutes a superb swan

song of the authors’ collaboration on this subject.

In particular, it presents a review of previous

efforts at extracting energy from seismograms,

and revises the power laws relating phase dura-

tion t0 and dominant period T0 to magnitude. The

authors now propose log10 t0 ¼ 0:32M � 1:4
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[rather than 0:25M � 0:7 in Gutenberg and

Richter (1942)], which would be in remarkable

agreement with modern scaling laws predicting a

slope of 1/3, but only in the absence of source

finiteness. However, the dominant period T0 in

the seismogram is described as being essentially

independent of magnitude. The authors suggest

an algorithm for the computation of seismic

energy from P waves (‘‘integrating ðA0=T0Þ2
over

the duration of large motion of the seismogram’’)

which constitutes a blueprint for later and

definitive algorithms, such as Boatwright and

Choy’s (1986), but of course, in the absence of

digital data, they can only propose an approxi-

mate methodology (integrating the maximum

value of velocity squared over an estimated

duration of the phase), which by modern stan-

dards, keeps too much emphasis on representing

the source as a monochromatic oscillator.

In the course of what was to be their last

contribution on this topic, Gutenberg and Richter

(1956a) make a number of visionary statements,

notably concerning the limitations inherent in the

model of a point source, which they argue make

it uncertain that ‘‘there is a one-to-one corre-

spondence between magnitude [...] and the total

energy radiation.’’ They conclude by emphasiz-

ing the necessity of a complete revision of the

magnitude scale, which they claim to be in

preparation, based on ground velocity (A/

T) rather than amplitude, this statement reflecting

once again both the pursuit of Richter’s (1935)

original goal of relating magnitudes to the

physical units of energy, but also the common

and erroneous model of a monochromatic oscil-

lator.

Beno Gutenberg died suddenly on 25 January

1960, and Charles Richter, the inventor of the

magnitude concept, never published any further

contribution on the topic of magnitudes or

seismic energy.

13. Developments regarding magnitude scales and

the computation of seismic energy following

Gutenberg’s death are better known and will be

only briefly summarized here. The torch was then

passed to Eastern Bloc scientists. Following the

International Union of Geodesy and Geophysics

(IUGG) meeting in Helsinki in 1960, Czech and

Russian scientists met in Prague in 1961, and

standardized the calculation of body- and sur-

face-wave magnitudes, respectively, mb

(measured in principle at 1 s) and Ms (at 20 s)

(Vaněk et al. 1962).4 Both algorithms were based

on the use of A/T, which the authors specifically

justified as linked to energy, thus once again

tacitly assuming the model of a monochromatic

oscillator. In operational terms, a major differ-

ence arises between mb and Ms: because of the

prominence of 20-s waves strongly dispersed

along oceanic paths, and suffering little attenu-

ation in the crust, and of the universal availability

of narrowband long-period instruments peaked

around its reference period, Ms has indeed been

measured close to 20 s, while measurements of

mb have often been taken at periods of several

seconds, which considerably affects not only its

relation to physical source size (i.e., seismic

moment and hence energy), but also its saturation

for large earthquakes. As a consequence, the

Prague-standardized Ms has been more compa-

rable to previous versions of surface-wave

magnitudes than its mb counterpart may have

been to previous body-wave scales such as

Gutenberg’s (1945b) mB, for which measure-

ments were often taken at more variable periods,

apparently as long as 7 s.

14. In the meantime, an interesting development had

taken place in the then Soviet Union with the

establishment of the so-called K-class scale for

regional earthquakes. We refer to Rautian et al.

(2007) and Bormann et al. (2012) for detailed

reviews, and will only discuss here a number of

significant points. That work originated with the

need to compile and classify the very abundant

seismicity occurring in the area of Garm, Tajik-

istan, notably in the aftermath of the Khait

earthquake of 10 July 1949. It is remarkable that,

even though it was conducted under what

amounted to material and academic autarky

4 This landmark paper was published simultaneously in

Moscow (Vaněk et al. 1962) and Prague (Kárnı́k et al. 1962). The

different listing of coauthors reflects the use of different alpha-

betical orders in the Cyrillic and Latin alphabets.

3826 E. A. Okal Pure Appl. Geophys.



(Hamburger et al. 2007), it nevertheless pro-

ceeded with great vision, and was rooted, at least

initially, in the principles which would later

constitute the foundations of modern algorithms

using digital data (e.g., Boatwright and Choy

1986).

Initial work on the K-class was clearly intent on

deriving a physically rigorous measurement of

energy from seismic recordings by setting an

a priori relation with energy (Bune 1955), later

formalized as

K ¼ log10 E ð14Þ

with E in joules (Rautian 1960). This approach

differed fundamentally from Richter’s (1935)

empirical definition of magnitude, and indeed

pursued the work of Golitsyn (1915) by seeking

to compute an energy flux at the receiver (Bune

1956). It is interesting to note that Bune clearly

mentions the need to work in the Fourier domain,

but in the absence of digital data (and of

computational infrastructure), he resorted to a

time-domain integration over a succession of

individual wavetrain oscillations, which may be

justifiable under the combination of Parseval’s

theorem and the presence of strong systematic

dispersion during propagation; however, the

latter may not be sufficiently developed at the

short distances involved. Faced with these chal-

lenges, Rautian (1960) reverted to the simplified

practice of adding the absolute maximum ampli-

tudes of P and S traces, in order to define an

adequate ‘‘amplitude’’ to be used in the compu-

tation of the energy flux. She also pointedly

recognized the influence of instrumentation, and

later the variability required when exporting the

algorithm to geologically different provinces

(e.g., Fedotov 1963; Solov’ev and Solov’eva

1967), both of which can be attributed to a

filtering effect (by instrument response and

regional anelastic attenuation), before interpret-

ing a complex source spectrum through a single

number in the time domain.

Attempts to relate K-class values to magnitudes

(as measured in the Soviet Union) were marred

by the fact that the former was built for small

events recorded at regional distances, while the

latter, based on the application of the Prague

formula to Love waves (Rautian et al. 2007),

tacitly assumed larger shocks recorded at tele-

seismic distances. Nevertheless, the initial work

of Rautian (1960) and systematic formal regres-

sions later performed by Rautian et al. (2007)

indicate an average slope Q ¼ 1:8 � 0:3 [note,

however, that in an application to larger earth-

quakes, Rautian (1960) suggested the use of a

‘‘total’’ seismic energy E0, growing slower than E

(in fact like E2=3; her Eq. (19)), leading to a

lower value of Q ¼ 1:1]. The origin of the

relatively high value Q ¼ 1:8 is unclear, but

probably stems from the simplified algorithm

used by Bune (1956) and Rautian (1960), which

may amount to narrow-bandpass filtering, thus

approaching the conditions of a monochromatic

signal (Q ¼ 2).

In retrospect, the clearly missing element in the

K-class algorithm is the key link between the

energy flux at the station and the radiation at the

source, which is now understood in the model of

ray tubes, and quantified using a formula

expressing geometrical spreading, e.g., in the

algorithm later developed by Boatwright and

Choy (1986). This concept, initially published as

Zöppritz et al. (1912), could not be applied to the

regional phases (Pn, Sn, Lg) on which the K-class

was built, which motivated Rautian (1960) to

develop other, more empirical algorithms.

15. Further significant progress could be made in the

early 1960s on account of several theoretical

developments. First, the double-couple was

introduced by Vvedenskaya (1956), as the phys-

ical representation of a dislocation along a fault

in an elastic medium, and later formalized by

Knopoff and Gilbert (1959); its amplitude, the

scalar moment M0; materializes the agent, mea-

surable in physical units, to which Richter (1935)

had lamented he had no access. In addition, Ben-

Menahem (1961) published a landmark investi-

gation of the effect of source finiteness on the

spectrum of seismic surface waves, introducing

the concept of directivity, which was to prove

critical in resolving the ‘‘energy paradox’’

exposed in Sect. 2.1. Based on the representation
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theorem, and considering a source of finite

dimension, Haskell (1964) gave the first expres-

sion for the energy radiated into P and S waves

by a finite source of arbitrary geometry, which he

found proportional to

E / W2ðDuÞ2
L

s2
; ð15Þ

where we have rewritten his Eq. (39) (p. 1821)

with the more usual notation W for fault width, L

for fault length, Du for fault slip, and s for rise

time. Under generally accepted scaling laws (Aki

1967), we anticipate that E would indeed be

proportional to M0, in agreement with Vassiliou

and Kanamori’s (1982) later work. Haskell’s

paper is remarkable in that it is the first one to

express seismic energy in the frequency domain

by means of a Fourier decomposition. By then,

efficient Fourier-transform algorithms were

becoming available (Cooley and Tukey 1965),

but digitizing analog records at time samplings

adequate to compute energy fluxes remained a

formidable challenge, which would be resolved

only with the implementation of analog-to-digital

converters in the 1970s (Hutt et al. 2002); it is

not fortuitous that the only spectral data pub-

lished in Haskell (1964) and its statistical sequel

(Haskell 1966) are limited to f\12 mHz [his

Fig. 2, reproduced from Ben-Menahem and

Toksöz (1963), and incidentally relating only to

source phase]. The same improvement in com-

putational capabilities in the 1960s had led to the

systematic development of ray-tracing tech-

niques which revitalized the estimate of energy

fluxes in the far field [whose idea, we recall, can

be traced all the way back to Mendenhall

(1888)], based in particular on the concept of

geometrical spreading defined by Zöppritz et al.

(1912). In particular, Wu (1966) laid the bases

for the computation of seismic energy from

digitized teleseismic body waves, but in practice,

it could be applied only to long-period records

until digital data became available in the 1970s.

The state of affairs in the mid-1960s is detailed in

Båth’s (1967) review paper, which rather sur-

prisingly does not mention Ben-Menahem’s

(1961) work on source finiteness, which was to

play a crucial role in any understanding of

magnitude and energy for large earthquakes.

16. By contrast, Brune and King (1967) addressed

the question of the influence of finiteness for

large earthquakes when using conventional mag-

nitudes measured at insufficient periods (e.g.,

Ms), and embarked on computing ‘‘mantle’’

magnitudes using 100-s Rayleigh waves (their

proposed MM, which we call here M100), thus

becoming the first to propose a systematic use of

mantle waves to quantify large earthquake

sources. They documented a dependence of

M100 on Ms (actually more precisely on an

undefined M) in the shape of a stylized ‘‘S’’,

whose intermediate regime corresponds to events

with initial corner periods between 20 and 100 s.

Brune and Engen (1969) complemented this

study with measurements on Love waves, this

time taken in the frequency domain in order to

separate individual periods in the absence of

dispersion. Remarkably, Brune and Engen (1969)

recognized two striking outliers in their ðM100 :

MÞ dataset: they found the 1933 Sanriku event

deficient in M100 despite a record M ¼ 8:9

assigned by Richter (1958); we have documented

this shock as a ‘‘snappy’’ intraplate earthquake,

which violated the scaling laws tacitly implied by

Richter when converting a long-period magni-

tude into a ‘‘unified’’ one based on a short-period

algorithm [see Okal et al. (2016) for a detailed

discussion]. On the opposite side, Brune and

Engen (1969) noticed that the 1946 Aleutian

earthquake, now known as a ‘‘tsunami earth-

quake’’ of exceptional source slowness

(Kanamori 1972; López and Okal 2006), featured

a mantle magnitude significantly larger than its

standard Ms. In a visionary statement, which

unfortunately remained largely unnoticed at the

time, they stressed the potential value of a mantle

magnitude in the field of tsunami warning (Brune

and Engen 1969; p. 933).

17. The connection between directivity, as intro-

duced by Ben-Menahem (1961), and full

saturation of magnitude scales measured at

constant periods was described in the now classic

papers by Kanamori and Anderson (1975) and

3828 E. A. Okal Pure Appl. Geophys.



Geller (1976). As mentioned in Sect. 2, Geller’s

last set of (unnumbered) equations on p. 1520

detail the relationship between Ms, measured at

20 s, and log10 M0, and in particular the evolution

of the slope between the latter and former from a

value of 1 at low magnitudes, through 1.5 over a

significant range of ‘‘large’’ earthquakes

(6:76�Ms � 8:12), a narrow interval where a

slope of 3 is predicted, and a final saturation of

Ms at a value of 8.22. We reproduce these

relations, complete with moment ranges, here:

Ms ¼ log10 M0 � 18:89 for

log10 M0 � 25:65 ðMs � 6:76Þ;
ð16aÞ

Ms ¼
2

3
ðlog10 M0 � 15:51Þ for

25:65� log10 M0 � 27:69 ð6:76�Ms � 8:12Þ;
ð16bÞ

Ms ¼
1

3
ðlog10 M0 � 3:33Þ for 27:69 � log10 M0

�28:00 ð8:12� Ms � 8:22Þ;
ð16cÞ

Ms ¼ 8:22 for log10 M0 	 28:00: ð16dÞ

The combination of these equations with the

relationships derived between mb and Ms (Geller

1976; first set of unnumbered equations, p. 1520)

leads to the following four-segment expression

for the variation of mb with moment:

mb ¼ log10 M0 � 17:56 for

log10 M0 � 21:75 ðmb � 4:19Þ;
ð17aÞ

mb ¼ 2

3
ðlog10 M0 � 15:47Þ for

21:75� log10 M0 � 23:79 ð4:19� mb � 5:55Þ;
ð17bÞ

mb ¼
1

3
ðlog10 M0 � 7:16Þ for 23:79� log10 M0

�25:16 ð5:55� mb � 6:00Þ;
ð17cÞ

mb ¼ 6:00 for log10 M0 	 25:16: ð17dÞ

These relations were obtained assuming a con-

stant stress drop, a constant aspect ratio (L/W) of

the fault, and constant particle and rupture

velocities. Equations (16) and (17) are plotted in

Fig. 1.

18. In his landmark paper, Kanamori (1977) intro-

duced the concept of ‘‘moment magnitude’’ Mw

by casting an independently obtained bona fide

scientific measurement of the seismic moment

M0 (in dyn cm) into a magnitude scale through

Mw ¼ 2

3

h
log10 M0 � 16:1

i
: ð18Þ

This definition of Mw seeks to (1) relate Mw to

earthquake energy (hence the subscript ‘‘w’’);

and (2) make its values comparable to those (M)

previously published, notably by Gutenberg and

Richter. In doing so, it specifically assumes a

ratio of 0:5 � 10�4 between energy and moment

[Kanamori 1977, Eq. (40) p. 2983], and also

‘‘Gutenberg and Richter’s energy–magnitude

relation’’ (1). While the former can be derived

under scaling laws, we have seen that the latter

lacked a satisfactory theoretical derivation. By

further seeking to ensure the largest possible

continuity between Mw and traditional M,

Kanamori (1977) forces the factor 2/3 into (18)

and thus tacitly assumes that the dataset of M is

always taken in the size range where the mag-

nitude has started to feel the effects of source

finiteness, characterized by a slope of 1.5 in

Fig. 1. This was further developed in the case of

local magnitudes ML by Hanks and Kanamori

(1979) and can also be applied conceptually to

the case of the body-wave magnitude mb. The

relationship (18) is then predicted to give an

estimate Mw approaching a classical magnitude

as long as the latter is computed exclusively in a

domain where it has started to be affected by

source finiteness, but with only one corner fre-

quency (that relating to fault length L) lower

than the reference frequency of that magnitude

scale, thus resulting in a slope of 1.5 in Fig. 1. In

other words, Mw should coincide with a tradi-

tional magnitude measurement if and only if that

magnitude is Ms for reasonably large earth-

quakes (25:65� log10 M0 � 27:69), mb for

smaller events (21:75� log10 M0 � 23:79), and

presumably ML at even smaller moments.
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Otherwise, and notably for smaller events (e.g.,

if using Ms for magnitude 5 events), one should

expect a discrepancy between Mw and Ms; this is

indeed the subject of the ‘‘bias’’ reported by

Ekström and Dziewoński (1988). In general

terms, Fig. 1, on which we have superimposed

(in solid green) the relationship predicted by

(18), features such a trend, but the values of Mw

are smaller, by about 0.35 logarithmic units,

than predicted by the dotted red and dashed blue

lines. Similarly, in the regime for smaller-size

events (slope of 1), the constant (18.89) relating

Ms to log10 M0 in (16a) is smaller than derived

theoretically by Okal (1989) (19.46, a difference

of 0.57 units) or obtained experimentally by

Ekström and Dziewoński (1988) (19.24; 0.35

units). This observation is traceable to the

modeling of the Ms : M0 relationship by Geller

(1976), copied here as Eq. (16); note in partic-

ular that the fit of these relations to the dataset in

his Fig. 7 deteriorates significantly for earth-

quakes in the moment range 1027 to

1028 dyn cm. A possible explanation is Geller’s

use of a relatively high Dr ¼ 50 bar as an

average stress drop. For this reason, we prefer to

replace Eq. (16) with

Ms ¼ log10 M0 � 19:46 for

log10 M0 � 26:22 ðMs � 6:76Þ;
ð19aÞ

Ms ¼
2

3
ðlog10 M0 � 16:08Þ for

26:22� log10 M0 � 28:26 ð6:76�Ms � 8:12Þ;
ð19bÞ

Ms ¼
1

3
ðlog10 M0 � 3:90Þ for

28:26 � log10 M0 � 28:56 ð8:12� Ms � 8:22Þ;
ð19cÞ

Ms ¼ 8:22 for log10 M0 	 28:56; ð19dÞ

shown in Fig. 2 as the thick red line superim-

posed on the background of Geller’s (1976)

Fig. 7. Note that a better fit is provided to

interplate earthquakes (solid dots), especially in

the range of moments 1027–1028 dyn cm, char-

acterized by the slope of 2/3 in (19b); upon

reduction of stress drop, corner frequencies are

in principle lowered, which results in a slight

displacement of saturation effects to higher

moments, and a better agreement with (18). We

similarly replace (17) with

mb ¼ log10 M0 � 18:18 for

log10 M0 � 22:36 ðmb � 4:19Þ;
ð20aÞ

mb ¼ 2

3
ðlog10 M0 � 16:08Þ for

22:36� log10 M0 � 24:41 ð4:19� mb � 5:55Þ;
ð20bÞ

mb ¼ 1

3
ðlog10 M0 � 7:76Þ for

24:41� log10 M0 � 25:76 ð5:55� mb � 6:00Þ;
ð20cÞ

mb ¼ 6:00 for log10 M0 	 25:76: ð20dÞ

In Fig. 3, it is clear that the fit to Ms and mb in

the ranges where they feature a slope of 2/3 is

much improved; we also achieve a small

Figure 2
Reproduction of Fig. 7 of Geller (1976), with our preferred

relationship (19) between Ms and log10 M0 superimposed in red
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reduction in the gap between moments separating

regimes for which Mw coincides with either Ms

or mb.

In this context, and in retrospect, it is unfortunate

that Brune and Engen (1969) would not (or could

not) push their measurements to periods longer

than 100 s. This should have been possible at

least for the largest earthquakes they studied, and

would probably have led them to the explanation

of the full saturation of magnitude scales, given

that even M100 will eventually be affected by

finite source dimensions (bringing the second

elbow in the stylized ‘‘S’’ in their Fig. 3), and

then fully saturate for even larger events. In this

respect, note that the dataset plotted on that fig-

ure uses as abscissæ ‘‘Magnitudes’’ which cannot

be strict Ms values, the latter saturating around

8.2 (Geller 1976, Fig. 7, p. 1517), and that the

stylized ‘‘S’’ fails to take into account the effect

of subsequent corner frequencies, for both Ms

and M100, which is expected to lead to the

saturation of both. This is shown in Fig. 4, where

we plot a theoretical version of their relationship,

obtained by adapting Eq. (19) to a reference

period 5 times longer (which simply amounts to

multiplying all elbow moments by a factor of

125). However, the fully saturated value M100 ¼
9:77 would occur at M0 ¼ 1:2 � 1030 dyn cm,

which would make it essentially unobservable.

19. Vassiliou and Kanamori (1982) applied Haskell’s

(1964) concept to derive energy estimates by

extracting the seismic moment M0 and the time-

integrated value of the source rate time function

squared (It in their notation) from hand-digitized

analog long-period records of teleseismic body

waves. They concluded that E=M0 was essen-

tially constant for shallow (and even a few deep

and intermediate) sources, but suggested a slope

Q ¼ 1:8 when regressing their estimates of

log10 E against published values of Ms. This is

probably due to the regression sampling into a

range of moments (	 1027:9) where severe sat-

uration affects Ms and drives it away from its

domain of variation as 2
3

log10 M0 (their Fig. 9a

and Table 1). It is noteworthy that Vassiliou and

Kanamori (1982) were the first to publish

logarithmic plots of energy-to-moment datasets,

later used systematically by Choy and Boat-

wright (1995) and Newman and Okal (1998).

Without access to high-frequency digital data,

they elected to directly estimate the ratio E=M2
0

[their Eq. (3) p. 373] from what amounts to

modeling the shape of long-period body waves,

which were at the time the only ones they could

hand-digitize from paper records. However

robust the procedure may be with respect to

parameters in the simple tapered-boxcar source

model they use (their Fig. 1), their approach will

perform poorly with complex, jagged sources

such as those characteristic of a number of

tsunami earthquakes (Tanioka et al. 1997; Polet

and Kanamori 2000).

20. Following the deployment of short-period and

broadband digital networks in the 1970s, the

landmark paper by Boatwright and Choy (1986)

finally regrouped all necessary ingredients for the

routine computation of radiated energy, includ-

ing the far-field energy flux approach (Wu 1966),

Magnitude 
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yn
 *
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m

)

mb Ms

"Mw"

Figure 3
Same as Fig. 1, with our preferred relationships (19) and (20) for

mb and Ms. Note the better agreement of Mw with both, in the

ranges where either has started to saturate
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a computation in the Fourier domain as sug-

gested by Haskell (1964), and adequate

corrections for geometrical spreading, anelastic

attenuation, and focal mechanism orientation. It

set the stage for the systematic computation of

radiated energies, the catalog of Choy and

Boatwright (1995) providing the first extensive

demonstration of a generally constant ratio

E=M0. Outliers to this trend, few in number but

of critical importance in terms of seismic or

tsunami risk and providing insight into ancillary

problems in plate tectonics, were later identified

by Choy et al. (2006). Newman and Okal (1998)

developed a simplified alternative to Boatwright

and Choy’s (1986) algorithm, allowing rapid

computation of H ¼ log10ðE=M0Þ, a robust

estimate of the slowness of a seismic source,

which was implemented as part of tsunami

warning procedures (Weinstein and Okal 2005).

Finally, Convers and Newman (2013) have

combined the measurement of radiated energy

with that of rupture duration, both obtained from

P waves, to identify as rapidly as possible

anomalously slow events bearing enhanced

tsunami risk; a similar approach can be found

in the definition of Okal’s (2013) parameter U.

21. Later developments in the study of the energy

radiated by seismic sources largely transcend the

mainly historical scope of the present paper, and

we will only review them succinctly.

Using a wide variety of sources from the largest

megaearthquakes to microearthquakes induced

Full Saturation

Ms = 8. 22; M100 = 9. 77

→

Ms

M
10

0

Rayleigh

Love

[Brune and
King, 1967]

[Brune and
Engen, 1969]

←

→

Figure 4
Left: Variation of mantle magnitudes versus conventional ones, reproduced from Brune and King (1967) (Rayleigh; top) and Brune and Engen

(1969) (Love; bottom). Note that the abscissæ are probably not strict Ms values, which are supposed to saturate around 8.2. Right: Theoretical

behavior of a 100-s magnitude versus 20-s Ms as predicted using Geller’s (1976) model. The dashed line reproduces the domain of study of

Brune’s papers, in agreement with the stylized ‘‘S’’ curves at left. Note the eventual saturation of M100 at a value of 9.77

(M0 ¼ 1:2 � 1030 dyn cm)
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during shaft excavation in granite (Gibowicz

et al. 1991), McGarr (1999) and Ide and Beroza

(2001) documented that, remarkably, the general

constancy of E=M0 can be extended over 17

orders of magnitude of seismic moment. How-

ever, as summarized, e.g., by Walter et al.

(2006), later studies failed to bring a firm

consensus for either a constant stress drop across

the range of significant earthquake sources, as

suggested, e.g., by Prieto et al. (2004) and more

recently Ye et al. (2016), or for a detectable in-

crease of ‘‘scaled energy’’ E=M0 for large

earthquakes (e.g., Mayeda et al. 2005). The

origin of this disparity of results remains obscure,

but may be rooted in the difficulty (or impossi-

bility) to obtain adequate, universal models of

attenuation at high frequencies (Sonley and

Abercrombie 2006), with Venkataraman and

Kanamori (2004) also mentioning the possible

effect of source directivity in biasing the com-

putation of radiated energy for large earthquakes.

4. A Discussion of Gutenberg and Richter’s

Derivations

The timeline in Sect. 3 provides a comprehensive

examination of the history of estimates of the energy

radiated by seismic sources, as well as of the devel-

opments of the concept of magnitudes. We return

here to the origin of Eq. (1) and specifically to the

derivation of the slope Q ¼ 1:5 implicit in Gutenberg

and Richter (1956a, b), and of the earlier value Q ¼
1:8 (Gutenberg and Richter 1942). The process by

which these values were obtained results from a

combination of parameters (ri and lj, see below)

generally expressing power laws controlling the rel-

ative growth with earthquake size of various physical

quantities; these parameters were usually obtained in

an empirical fashion by Gutenberg and Richter, but

can now be explored in the context of seismic source

scaling laws. Tables 1 and 2 summarize their values

and properties, in particular their poor robustness.

As explained in Sect. 2.2, radiated energy is

proportional to seismic moment M0, and this was

verified eventually from datasets such as Choy and

Boatwright’s (1995) or Newman and Okal’s (1998).

On the other hand, the concept of magnitude, which

measures the logarithm of ground displacement,

should be proportional to log10 M0, at least in the

absence of saturation effects due to source finiteness.

The combination of these two remarks should lead to

a theoretical value of Q ¼ 1.

We start by noting that energy is carried mostly

by high-frequency body waves, and as such should be

measured on high-frequency seismograms. On a

global scale, this restricted early authors to mea-

surements of acceleration by strong-motion

instruments, at least initially (in the 1930s and

1940s). It is probable that, partly because of this

instrumental restriction and partly because their

model to trace back the energy flux to a point source

was developed only above the hypocenter, all their

energy calculations were performed at the epicenter

(with the subscript zero on all relevant variables, such

as A0, a0, etc.). This remains surprising since short-

period instruments providing high performance in the

far field had been developed at Caltech (Benioff

1932), and were operating routinely by the late 1930s.

Their records were indeed used by Gutenberg

(1945b, c) to develop his body-wave magnitude mB.

One can only speculate as to why Gutenberg and

Richter did not embark on a teleseismic measurement

of radiated energy, especially since Gutenberg was

obviously cognizant of the concept of geometrical

spreading, having written up (with Geiger) the land-

mark paper by Zöppritz et al. (1912) following the

first author’s untimely death in 1908.

As a result, when trying to relate energy and

magnitude on a global scale, the authors compute an

energy in the near field, from what are primarily

measurements of accelerations, but a magnitude from

ground motions (or perhaps estimates of velocity)

obtained in the regional or far field. This is the source

of the complex, occasionally arcane, nature of their

derivations; in order to streamline the argument, we

have relegated critical details of their calculations to

the Appendix, which also presents a discussion of the

(generally poor) robustness of the resulting parame-

ters, including the slopes Q.
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4.1. The Derivation of Q ¼ 1:8 by Gutenberg

and Richter (1942)

The derivation proposed in that paper is based on:

(i) The definition of magnitude M from the ampli-

tude of ground motion A0 recorded by a torsion

instrument, which we can write schematically as

M ¼ r1 log10 A þ c1 ¼ r1 log10 A0 þ c01 ð21Þ

Table 1

Summary of parameters ri used by Gutenberg and Richter (1942)

Parameter Description Defining

equation

G–R

value

Expected modern value Robustness

r1 Slope of M versus log10 of displacement A (21) 1 Forced

r2 Slope of M versus log10 of acceleration a (22) 1.8 4 to 8 Very poor

r3 Inverse slope of M versus log10 of duration t0 (23) 0.25 1/3 before initiation of

saturation; grows thereafter

Poor

r4 Power law coefficient of kinetic energy E versus dominant

period T0 (at constant a0)

(25) 2 Forced

r5 Power law coefficient of kinetic energy E versus acceleration a0

(at constant T0)

(25) 2 Forced

r6 Slope of log10 of dominant period T0 versus magnitude M

r6 ¼ 1
2
� 1

2r2

(29) 0.22 1/3 before initiation of

saturation; grows thereafter

Poor

r7 Power law coefficient of dominant period T versus energy E

r7 ¼ r6=Q

(30) 0.12 1/3 Poor

r8 Power law coefficient of kinetic energy E versus acceleration a0

(including effect of T0) r8 ¼ 1 þ r2ð1 þ r3Þ
(A.2) 3.25 3 to 7, see Fig. 6 Very poor

Q Slope of log10 E versus M in G–R relation Q ¼ 1þ r3 þ 1
r2

(27) 1.8 1 before initiation of

saturation

Poor

Table 2

Summary of parameters lj used by Gutenberg and Richter (1956b)

Parameter Description Defining

equation

G–R value Expected modern value Robustness

l1 Slope of m versus log10 of displacement-to-period

ratio q ¼ log10 A=T

(31) 1 Forced

l2 Power law exponent of energy E versus duration t0
(at constant q0)

(32) 1 Forced

l3 Power law exponent of energy E versus logarithmic

ratio q0 (at constant t0)

(32) 2 Forced

l04;�l004 Regression coefficients of q0 versus local magnitude

ML and M2
L

(33) 0.8; 0.01

l4 l04 for a linear regression (l004 ¼ 0). Also, slope of m

versus ML

(34) 0.7

(inferred)

1 before initiation of

saturation

Poor

l5 Slope of log10 of dominant period T versus

logarithmic ratio q

(36) 0.4

l6 Slope of log10 of energy E versus magnitude m

l6 ¼ l3 þ l5

(38) 2.4 Poor

l7 Slope of ‘‘unified’’ magnitude m versus surface-

wave magnitude Ms

(39) 0.63 1 before initiation of

saturation; 2/3 and greater

thereafter

Poor

Q Slope of log10 E versus M in G–R relation

Q ¼ l6 � l7
(40) 1.5 1 before initiation of

saturation

Poor
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with a slope r1 identically equal to 1, as imposed

by Richter (1935); note that A in (21), being

measured at a regional distance (typically up to a

few hundred kilometers), is not necessarily an

epicentral value (A0), but is taken as such by the

authors, the difference being absorbed into the

constant c01.

(ii) The correlation (11) between magnitude and

epicentral acceleration a0 [their Eq. (20) p. 176]

reproduced here as

M ¼ r2 log10 a0 þ c2; ð22Þ

the slope r2 ¼ 1:8 being obtained empirically

from the comparison of magnitude values mea-

sured on torsion instruments in the regional field

and accelerations derived from strong-motion

seismograms in the vicinity of the epicenter;

(iii) An empirical relation between the duration of

‘‘strong ground shaking’’ t0 and magnitude [their

Eq. (28) p. 178]:

log10 t0 ¼ r3M þ c3; ð23Þ

where r3 ¼ 0:25;

(iv) The calculation (10) of seismic energy E from

the energy flux radiated vertically at the epicen-

ter above a point source [their Eq. (24) p. 178],

which we rewrite as

E ¼ C4 � t0 � V2
0 ; ð24Þ

where V0 is ground velocity, and all ci and Ci are

constants independent of event size.

We have rewritten (10) as (24) to emphasize that (21),

(22), and (24) involve different physical quantities,

namely displacement [used in Richter’s (1935) original

definition], acceleration (available as strong-motion

data in the epicentral area), and ground velocity

(defining the kinetic energy flux). The authors’ ensuing

combinations of these equations through the use of the

‘‘period T0’’ of the signal, presumably the dominant

one, tacitly imply a harmonic character for the

source, an additional complexity being that the

concept of signal duration, t0, is sensu stricto incom-

patible with this model, since a monochromatic signal

is by definition of infinite duration.

Under that ad hoc assumption, they then derive

their Eqs. (24) or (27) for E, which we rewrite as

log10 E ¼ c4 þ log10 t0 þ r4 log10 T0 þ r5 log10 a0

ð25Þ

with r5 ¼ 2 identically [from (24), i.e., the power of

2 in the kinetic energy] and r4 ¼ 2 identically (two

powers of T0 going from V2
0 to a2

0). Similarly, they

transform (21) into

M ¼ r1 log10 a0 þ r4 log10 T0 þ c5; ð26Þ

equivalent to their Eq. (31). Substituting (22), (23),

and (26) into (25) (note that r4, in principle equal to

2, and hence all direct reference to T0, are elimi-

nated), they obtain

log10 E ¼ QM þ C0 ð27Þ

with

Q ¼ r1 þ r3 þ
r5 � r1

r2

¼ 1 þ r3 þ
1

r2

� 1:8:

ð28Þ

The slope Q ¼ 1:8 is thus explained as a combination

of the various slopes ri. The latter are of a very

different nature: r1 ¼ 1 and r5 ¼ 2 were fixed in

Gutenberg and Richter’s (1942) model, while r2 and

r3 (1.8 and 0.25, respectively) were obtained

empirically by the authors, and as such could vary,

impacting significantly the value of Q derived from

(28). We emphasize this point in the third member of

Eq. (28), which leaves only r2 and r3 as variables.

As summarized in Table 1, the critical exami-

nation of this derivation detailed in the Appendix

shows that the robustness of Q ¼ 1:8 with respect to

various assumptions underlying the computations is

poor.

Note finally that Gutenberg and Richter (1942)

combined their Eqs. (20) and (31) (our Eqs. 22 and

26) to obtain the dependence with magnitude of the

dominant period T0, which had dropped out of their

derivation of Q:

log10 T0 ¼ r6M þ c6 with

r6 ¼ 1

r4

� r1

r4 � r2

¼ 0:22;
ð29Þ

further leading to
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log10 T0 ¼ r7 log10 E þ c7; r7 ¼ r6

Q
¼ 0:12;

ð30Þ

some limitations of those two relations being further

discussed in the Appendix.

4.2. The Final Regressions: the Road to Q ¼ 1:5

(Gutenberg and Richter 1956b)

In this section, we paraphrase that paper to

underscore the fundamental steps which led the

authors to Q ¼ 1:5. In the various equations relating

E, m, A, etc., we will use formal slopes comparable to

the ri used above, but with the notation lj to avoid

confusion; cj will be constants substituting for the ci

above, largely irrelevant in the present discussion.

Note that indexing of the parameters ri and lj is in

both cases sequential in the derivation, so that r and l
of identical index (i ¼ j) may not describe compara-

ble physical relations. The results are summarized in

Table 2, in a format similar to that of Table 1; again,

additional details can be found in the Appendix.

The situation differs from the previous derivation

[Sect. 4.1 above, after Gutenberg and Richter (1942)]

in several respects. First, and most importantly, the

authors introduce the variable q0 ¼ log10ðA0=T0Þ;
following Gutenberg (1945c), the body-wave magni-

tudes, in particular mB and hence m, are now defined

from q0, rather than from the logarithm of A0:

m ¼ l1 � q0 þ c1 ¼ l1ðlog10 A0 � log10 T0Þ þ c1

ð31Þ

with l1 ¼ 1 identically (Gutenberg and Richter

1956b; Eq. 11). Next, the authors now consider as

their reference magnitude the unified magnitude

m rather than Richter’s (1935) original scale (re-

stricted to local records of California earthquakes).

Finally, several relationships now feature nonlinear

(albeit weak) terms.

The fundamental difference between (31) and (21)

stems from an implicit variation of the dominant

period T0 with earthquake size, which would be

expected from scaling laws. However, the combined

influence of anelastic attenuation and instrument

response can act as a bandpass filter, reducing

variations in the dominant period, which may then

significantly violate scaling laws, an effect enhanced

at the short periods considered by the authors. For

this reason, it may not be possible to define an

expected value of the parameters l under modern

theories, and we leave blank several entries in the

relevant column in Table 2.

Gutenberg and Richter’s (1956b) next step is their

Eq. (8) p. 10, equivalent to (24), and leading to

log10 E ¼ c2 þ l2 log10 t0 þ l3ðlog10 A0 � log10 T0Þ
¼ c2 þ l2 log10 t0 þ l3q0

ð32Þ

with l2 ¼ 1 and l3 ¼ 2 identically. The introduction

of q0 rather than A0 (with a nonconstant period T0)

then results in their new Eq. (9):

q0 ¼ c3 þ l04ML � l004M2
L ð33Þ

with l04 ¼ 0:8 and l004 ¼ 0:01 (empirical values). Note

that (33) expresses the relationship between m and

ML (Gutenberg and Richter 1956b; Eq. 14), and

under the assumption that its curvature can be

neglected, l4 is also the slope of m versus ML:

m ¼ l4ML þ c4: ð34Þ

Note that, by comparison with (29), and assuming

again that l004 can be neglected, Eq. (33) leads to

r6 ¼ 1 � l4

r1

¼ 0:2: ð35Þ

Next, the authors study empirically the relation

between the duration t0 in the epicentral area and the

newly defined parameter q0:

log10 t0 ¼ l5q0 þ c5: ð36Þ

They obtain a slope l5 ¼ 0:4 [their Eq. (10)], which

we have confirmed (0:40 � 0:06Þ by regressing the 19

points on their Fig. 6a [which are probably a subset

of the previously mentioned dataset in Fig. 1 of

Gutenberg and Richter (1956a)].

Note that the combination of (21), (23), (35), and

(36) leads to

l5 ¼ r3r1

1 � r6

¼ r3

l4

; ð37Þ

which takes the observed value l5 ¼ 0:4 for l4 ¼ 0:8

and r3 ¼ 0:32 as favored by Gutenberg and Richter

(1956a), but l5 ¼ 0:31 for r3 ¼ 0:25 under the first
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combination. Although not specifically spelt out in

Gutenberg and Richter (1956b), the combination of

(31), (32), and (37) then leads, for l5 ¼ 0:4, to

log10 E ¼ l6m þ c6 with l6 ¼ l3 þ l2l5

l1

¼ l3 þ l5 ¼ 2:4;

ð38Þ

and then to (2), which as discussed in the Appendix,

remains dependent on r3 through (37), and hence on

the dataset in Fig. 1 of Gutenberg and Richter

(1956a).

Using this slope of 2.4 in (2), and in order to

finalize Q ¼ 1:5 in (1), there remains to justify (3).

That relation traces its origin to Fig. 9 of Gutenberg

and Richter (1956a, p. 138), which examines the

slope l7 regressing m versus Ms:

m ¼ l7Ms þ c7 ð39Þ

[note, however, that instead of m in (39), Gutenberg

and Richter (1956b) apparently use the uncorrected

body-wave magnitude (but with the notation MB, as

opposed to mB)]. They describe an average slope of

0.4 between (Ms � MB) and Ms, equivalent to

l7 ¼ 0:6, later revised to l7 ¼ 0:63 by Gutenberg

and Richter (1956b). We have verified that a modern

regression of the 105 points in their Fig. 9 does yield

1 � l7 ¼ 0:37 � 0:03. Then, the slope Q is just the

product

Q ¼ l6 � l7; ð40Þ

which takes the value 1.51, justifying (1).

4.3. Discussion

The detailed examination of the derivations of the

slopes Q ¼ 1:8 in Gutenberg and Richter (1942) and

later Q ¼ 1:5 inferred from Gutenberg and Richter

(1956b), and the critical analysis of their underlying

assumptions carried out in the Appendix, should

severely limit the confidence of the modern reader in

the resulting slopes Q and in particular in the value

1.5, proposed in their last contributions and now

universally enshrined into seismological dogma. We

recap here some of the most serious limitations

documented in the present study:

• First, it is not clear that they correctly measured

the energy flux at the epicenter.

As we have stated several times, the algorithm used

by Gutenberg and Richter (1942) to evaluate energy

flux near the epicenter consists of squaring the

product of the maximum ground acceleration and

the dominant period, and multiplying the result by the

duration of sustained maximum ground motion. This

is only a gross approximation to the integral defining

energy flux, as defined later, e.g., by Haskell (1964),

and suffers from an inherent flaw, the concept of a

single (or dominant) frequency being incompatible

with that of a finite signal duration.

• Next, the authors were using a simplified analytical

model.

The latter essentially predated any knowledge of

anelastic attenuation, for which models would start

being available (albeit at much lower frequencies) in

the late 1950s and early 1960s (Ewing and Press

1954; Satô 1958; Anderson and Archambeau 1964);

of an adequate physical representation of the earth-

quake source as a double-couple (Knopoff and

Gilbert 1959); or even of the concept of a spatially

extended source, an idea pioneered by Lamb (1916)

and heralded analytically by Ben-Menahem (1961).

Feeling constrained to work in the near field,

Gutenberg and Richter were using the model of a

point source, whereas most earthquakes in their

datasets would have had fault lengths comparable

to, or greater than, their hypocentral depth. It would

take six years following Gutenberg’s death for Wu

(1966) to regroup these later developments into a

blueprint for the definitive computation of radiated

energy from teleseismic datasets, which would be put

to fruition only when digital data became available in

the 1970s.

• In addition, the robustness of their results is

seriously cast in doubt.

The final slopes Q are obtained from the parameters

ri and lj, which relate observables of a high-

frequency nature, strongly affected if not fully

controlled by small-scale heterogeneity within the

seismic source, as now universally documented by

source tomography studies of recent megathrust

events (Ishii et al. 2007; Lay et al. 2011). Such

Vol. 176, (2019) Energy and Magnitude: A Historical Perspective 3837



source structure acts to defy the scaling laws which

are inherent in the derivations of Q proposed by

Gutenberg and Richter (1942, 1956b). Not surpris-

ingly then, Eqs. (22) and (23) [or (31) and (36)]

formalizing these scaling laws have not been upheld

by modern strong-motion studies in the near field.

One can only speculate as to how Gutenberg and

Richter may have pursued this line of work, but for

the former’s sudden death in 1960. Despite the

promise of a full revision of magnitude scales

(Gutenberg and Richter 1956a; abstract p. 165), no

such work came forth during the next three years, a

time when Gutenberg apparently shifted his main

activity to studies in structural seismology, especially

regarding the Earth’s core (Gutenberg 1958). How-

ever, it is highly probable that he would have been, at

the time of his death, cognizant of the new represen-

tation of the seismic source as a double-couple

quantified by a seismic moment M0, introduced in the

West a year earlier by Knopoff and Gilbert (1959).

One can only assume that, eventually, Gutenberg

would have sought to relate magnitude to M0, even

though the first measurement of seismic moment

from long-period waves had to wait until Aki’s

(1966) study of the 1964 Niigata earthquake, and a

sufficient dataset of values until the early 1970s,

allowing the landmark studies by Kanamori and

Anderson (1975) and Geller (1976).

Figure 5 summarizes the evolution of the slope

factor Q in Gutenberg and Richter’s papers from

1935 until Gutenberg’s death. A further step in

speculation would address how this inescapable,

regular decrease would have continued, had the two

authors been able to keep a proactive collaboration. A

linear regression of the three points in the 1950s,

when the authors’ work was most supported analyt-

ically, predicts that they would have reached the more

justifiable value Q ¼ 1 in 1968. A full regression of

the six values published since 1935 would suggest

1981. However, we note that, by then, Gutenberg

would have been 92 years old.

5. Conclusion and Perspective

A detailed, occasionally forensic examination of

the algorithms used by Gutenberg and Richter (1942;

1956b) suggests that they may have been legitimate

under what was the state of the art of seismology in

the 1940s and 1950s, but are nowadays difficult to

reconcile with modern advances in source theory and

Earth structure, including anelasticity, as well as with

Figure 5
Evolution with time of the value of the slope Q in the various relations proposed by Gutenberg and Richter between seismic energy and

magnitude. The dashed line is the value (Q ¼ 1) derived theoretically for a point source double-couple. The vertical downpointing arrow

indicates Gutenberg’s death on 25 January 1960. The green line shows a linear regression through the six published values (1935–1956) and

the pink one through the last three (1949–1956). The dashed blue line expresses the value Q ¼ 1:5, frozen into perpetuity as the last one

published before B. Gutenberg’s death
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the advent of high-frequency digital data. In this

context, the physical models underlying the deriva-

tion of the successive values of the slope Q, including

the empirical relations used by Gutenberg and Rich-

ter, can now appear simplistic if not outright

inaccurate, e.g., the model of a point source, and the

implicit assumption of a monochromatic signal. As a

result, the derived values of Q clearly lack robustness,

and in particular the last one (1.5) hardly deserves the

apparently sacred character which led to its being

enshrined into the definition of moment magnitude

Mw by Kanamori (1977).

We recall that, in their last paper on the subject,

Gutenberg and Richter (1956a) commented that there

may not necessarily be a single relationship between

seismic energy and any magnitude scale. In retro-

spect, this statement appears visionary, as we now

understand that the concept of radiated energy is

fundamentally anchored in the high-frequency part of

the source spectrum, whereas individual magnitude

scales target specific periods which can belong to

significantly different parts of the spectrum. Note that

Kanamori (1983) echoed this statement, asserting that

‘‘It is impossible to represent all [...] parameters by a

single number, the magnitude.’’

Since the advent of digital seismology in the late

1970s, it has become clear that many seismic sources

do indeed follow laws of similitude allowing the

description of many, if not all, of an event’s source

properties on the basis of a single number, namely its

seismic moment M0, which Kanamori (1977) has

proposed to cast into the ‘‘magnitude’’ Mw, thus

introducing a parameter combining the rigor of the

underlying quantification of a physical quantity with

the practicality of empirically derived magnitude

scales. Such source properties generally include

radiated energy E, as documented by extensive cat-

alogs such as Choy and Boatwright’s (1995).

At the same time, a number of violations to these

scaling laws have been regularly documented, both in

the form of ‘‘slow’’ events, whose red-shifted spec-

trum leads to a deficiency in radiated energy, and of

‘‘snappy’’ ones featuring a blue-shifted spectrum.

Such rogue events bear crucial societal relevance,

since the former include the so-called tsunami

earthquakes (Kanamori 1972), whose real-time

identification remains a challenge in operational

tsunami warning, while the latter have proven omi-

nously destructive due to exceptional levels of ground

acceleration, e.g., reaching 2.2g during the relatively

small (Mw ¼ 6:2Þ 2011 Christchurch earthquake

(Holden 2011).

However, little progress has been made in the

understanding of parameters possibly controlling

their occurrence. For example, it is not clear whether

all megaquakes (defined as having moments greater

than 1029 dyn cm) feature source slowness (Okal

2013, Fig. 10), or whether there exists a regional

trend controlled by simple tectonic patterns to the

distribution (and hence to the predictability) of tsu-

nami earthquakes, an idea hinted at by Okal and

Newman (2001), and further supported by the 2006

Java and 2012 El Salvador events. In this context, the

availability of catalogs asserting a diversity of source

parameters is of crucial necessity for further research

into such topics.

Yet, such catalogs are not (or no longer) made

readily available. For example, an updated extension

of Choy and Boatwright’s (1995) extremely valuable

dataset is not widely distributed, and to our best

knowledge, their dataset is no longer being routinely

updated. Similarly, for many years, the National

Earthquake Information Center of the United States

Geological Survey had distributed an electronic cat-

alog of epicenters, listing for each event a set of

various and occasionally different conventional

magnitudes (mb;Ms;ML), in addition to moment

estimates transcribed as Mw. This allowed the easy

identification of anomalous events, e.g., through a

simple search for an mb : Ms disparity (a predecessor

to the E=M0 ratio in the pre-digital age). As of 2015,

this practice has been discontinued and replaced by

the issuance of a single magnitude, whose nature

(body, surface, local, moment, etc.) is not clearly

specified, with the probable goal of making the cat-

alog less confusing to the lay user, admittedly a

legitimate concern. As a result, the individual

researcher has lost a powerful tool to further our

understanding of earthquake source properties.

Within a few decades, the careless or simply unin-

formed investigator might be tempted to conclude

that earthquakes violating scaling laws ceased to

occur after 2014.
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Incidentally, seismology is not alone in featuring

a diversity of source properties acting to restrict the

range of validity of scaling laws. For example, the

size of hurricanes has been described through a Safir–

Simpson ‘‘category’’ index, a single number quanti-

fying several of their properties, such as geometrical

extent, maximum wind velocity, and underpressure at

the center of the eye; as such, it constitutes a measure

conceptually similar to an earthquake magnitude.

However, major hurricanes have shown that such an

approach constitutes a drastic simplification, with

Sandy in 2012 featuring a diameter of 1800 km for a

minimum pressure of 940 mbar and winds of

185 km/h (Blake et al. 2013), while the 2015 Mexi-

can hurricane Patricia registered a record low

pressure of 872 mbar and winds of 345 km/h con-

centrated in a system not more than 800 km across

(Kimberlain et al. 2016). Such limitations for hurri-

cane scaling laws are not intrinsically different from

the diversity expressed for seismic sources through

variations in energy-to-moment ratios, and similarly

prevent an accurate societal prediction of the level of

natural hazard based on a single quantifier (magni-

tude or category) of the event. Another example

would be the Volcanic Explosivity Index (Newhall

and Self 1982), widely used to rank large volcanic

eruptions, but ignoring specific properties signifi-

cantly affecting their dynamics as well as their

climatic and societal effects (Miles et al. 2004).

In this context, it behooves the seismological

community to observe, respect, and fully document

the occasional diversity in source properties of

earthquakes, notably by restoring the now abandoned

practice of systematic reporting of radiated seismic

energy. This is a necessary step towards the further-

ance of our understanding of seismic source

properties in the context of their societal impact, in

keeping with the pioneering work of Beno Gutenberg

and Charles Richter.
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Appendix: Critical Details of Gutenberg

and Richter’s Derivations

In this Appendix, we present some critical details

of the derivations of the slopes Q ¼ 1:8 (Gutenberg

and Richter 1942) and Q ¼ 1:5 (Gutenberg and

Richter 1956b), and in particular examine their

robustness which eventually controls that of the

inferred parameters Q.

A.1. Derivation of Q ¼ 1:8 (Gutenberg and Richter

1942), Eqs. (21–30) of Main Text

Note that any increase in the slope r2 in (28) will

lead to a decrease in Q. In the context of modern

strong-motion seismology, it has become clear that an

equation of the form (22) may not apply, and

certainly not universally, between local magnitude

and the logarithm of peak acceleration, with most

modern models featuring nonlinear relationships

(e.g., Abrahamson and Silva 1997). In practice, and

as illustrated, e.g., by Bolt and Abrahamson (2003;

their Fig. 3), a value of r2 � 4 may be legitimate

around ML ¼ 6, but would grow as high as r2 � 8 at

ML ¼ 7, illustrating the well-known effect of satura-

tion of maximum acceleration with moment

(Anderson and Lie 1994). In this context, it is

difficult to justify on theoretical grounds any form of

Eq. (22), let alone the value r2 ¼ 1:8, which appears

at any rate as a lower bound of values that could be

derived in narrow ranges of magnitudes from modern

datasets. In hindsight, r2 probably constitutes the

least well constrained among the slopes ri in

Gutenberg and Richter’s (1942) approach.

As for the slope r3, it expresses the variation with

M of the duration parameter t0 defined by Gutenberg

and Richter (1942) as the time over which ‘‘equal

sinusoidal waves’’ are recorded at a near-field

receiver. From a modern theoretical standpoint, t0

would be expected to scale with the total duration of
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rupture on the fault, and hence as M
1=3
0 . Assuming

that the magnitude M is taken in its range of initial

saturation (featuring a slope of 2/3 with log10 M0), r3

should then equal 1/2 (Trifunac and Brady 1975). By

contrast, Gutenberg and Richter (1942) obtained

empirically r3 ¼ 1=4. Gutenberg and Richter

(1956a) later revised this estimate to 0.32, based on

a dataset of 29 measurements (their Fig. 1, p. 110),

for which a modern regression yields a slope of

0:30 � 0:02, or 0:29 � 0:03 when excluding a lone

measurement for a barely detectable shock (Richter

and Nordquist 1948); at any rate, we have found that

the quality of fit improves by only 5 % between

slopes of 0.25 and 0.30.

Gutenberg and Richter’s (1942) parameter t0 may

be comparable to the duration s defined in strong-

motion seismology; in that framework, we note

indeed a relationship of the form (23) between

log10 s and M, with r3 ¼ 0:32, quoted by several

authors (e.g., Esteva and Rosenblueth 1964). How-

ever, further work has shown a poor dependence of

log10 s on magnitude, and suggested a better fit using

a linear relation between s and M (Housner 1965;

Vanmarcke and Lai 1980). Various authors, including

Housner (1965) and Trifunac and Brady (1975), have

reported a decrease of duration with Mercalli inten-

sity, especially when the former is measured using

acceleration spectra, which for large earthquakes are

expected to be strongly red-shifted; this led Housner

(1965) to define a limit of ‘‘maximum duration’’

growing, perhaps linearly, albeit rather erratically,

with magnitude. The bottom line of this discussion is

that an equation of the form (23) is poorly fit by

modern strong-motion data, and hence that the

parameter r3, if at all justifiable, is prone to

substantial variations, which in turn will impact the

slope Q.

Note finally that the duration of strong motion, t0,

should not be confused with the coda duration upon

which so-called duration magnitudes have been

proposed, which incidentally also feature a broadly

variable range of slope parameters r (Lee and

Stewart 1981).

In addition to these uncertainties in the values of

r2 and r3 in (28), we stress, once again, that a

fundamental difficulty with Gutenberg and Richter’s

(1942) proposed derivation remains that it assumes a

harmonic oscillation in order to relate the displace-

ment A0 used in the definition of magnitude to the

velocity V0 inherent in the calculation of the energy

flux. In particular, the fact that the period T0 required

to relate them disappears from the final Eq. (28)

should not obscure that its implicit existence under-

lies the derivation.

An additional, and significant, problem stems

from the assumption of a spherical wave front at the

epicenter above a point source, for the calculation of

the energy flux. There are two issues there which are

bound to fail for large earthquakes whose fault

dimension, L, becomes larger than the source depth.

First, in the near field, ground motion is essentially

proportional to the slip on the fault, and as such

grows only like M
1=3
0 , a result well known to

practitioners of deformation codes such as Mansinha

and Smylie’s (1971) or Okada’s (1985). Second,

Gutenberg and Richter (1942) interpret the energy

computed at an epicentral station as an energy flux,

which they then integrate over a focal sphere whose

radius is the hypocentral depth, thus clearly assuming

a point source. By contrast, modern calculations of

energy flux are carried out in the far field, many fault

lengths away from the source, and as such are

immune to that problem (e.g., Boatwright and Choy

1986).

More generally, we note that Gutenberg and

Richter (1942) had appropriately recognized the time

finiteness of the source by introducing its duration t0

at the epicenter, and even its dominant period T0,

which inherently requires a finite source time, but

they never addressed the problem of the spatial

finiteness of the source, and their models always

considered a point source in space. Only in the last

section of their last paper (Gutenberg and Richter

1956a; p.142) would they recognize a future need to

consider this problem, which was to be fully studied

only after Gutenberg’s death (Ben-Menahem 1961).

Gutenberg and Richter (1942; Eq. (41) p. 188)

also sought to directly relate the acceleration at the

epicenter, a0, to the energy E of the earthquake.

Eliminating M between (22) and (27) leads to

log10 E ¼ r8 log10 a0 þ c8 ðA:1Þ

with
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r8 ¼ r5 � r1 þ r2ðr1 þ r3Þ ¼ 1 þ r2ð1 þ r3Þ

� 3:25;
1

r8

¼ 0:31:

ðA:2Þ

This inverse slope being remarkably close to 1/3, the

authors rounded it, and proposed in their Eq. (42) a

cubic root dependence of acceleration a0 on energy

E. The modern reader should resist the temptation to

associate this result to the growth of epicentral dis-

placement A0, itself controlled by seismic slip Du (at

least for sources shallower than their spatial extent),

as M
1=3
0 : for point source double-couples, Newton’s

(1687) law does predict a0 directly proportional to

M0, but for finite sources, scaling laws would actually

predict a corner frequency scaling as M
�1=3
0 , leading

to a decrease of peak acceleration as M
�1=3
0 , a result

generally in line with the empirically reported satu-

ration of peak acceleration with earthquake size

(Anderson and Lie 1994). We believe that the value

r8 � 3 is a fortuitous result of the particular choice of

slopes r2 and r3. For example, the ‘‘second’’ com-

bination of r2 ¼ 4 [as suggested by Bolt and

Abrahamson (2003) for moderate earthquakes] and

r3 ¼ 0:32 [as used later by Gutenberg and Richter

(1956a)] does lead to Q ¼ 1:57, close to the values of

1.6 suggested by Gutenberg and Richter (1954) and

1.5 as given by (1), but this second combination

nearly doubles r8, to a value of 6.28.

We next consider the slopes r6 and r7, defined in

(29) and (30). As mentioned above, these slopes are

difficult to reconcile with modern scaling laws, which

would predict r8 ¼ 1=3 under the assumption that T0

is directly related to the inverse of a source corner

frequency. We note, again, that r7 will vary strongly

with the coefficients r2 and r3 determined empiri-

cally by Gutenberg and Richter (1942, 1956a). For

example, for (r2 ¼ 4; r3 ¼ 0:32), r6 rises to 0.38 and

r7 doubles, to 0.24.

More systematically, we explore in Fig. 6 the

variation of the slopes Q, r8 (through its physically

more meaningful inverse, 1=r8), and r7 as a function

of the empirical slopes r2 and r3. The former is

allowed to vary between 0 and 6, covering the range

suggested by strong-motion investigations (Bolt and

Abrahamson 2003), and the latter between 0.1 and

0.6, to include the theoretical value (0.5) expected

from scaling laws under the assumption that t0
represents the inverse of a corner frequency of the

source spectrum. The resulting values of Q, 1=r8, and

r7 are simply computed from (27), (29), (30), and

(A.2) under the constraints r1 ¼ 1, r4 ¼ 2, and

r5 ¼ 2, and their contours are color-coded using

individual palettes. The bull’s eyes indicate the

‘‘first’’ combination (r2 ¼ 1:8; r3 ¼ 0:25) used by

Gutenberg and Richter (1942), and the triangles the

second combination [larger values of r2 ¼ 4 sug-

gested by strong-motion data; and r3 ¼ 0:32 later

adopted by Gutenberg and Richter (1956a)]. Figure

6 provides a quantitative illustration of the absence of

precision of the slopes computed by Gutenberg and

Richter, most notably of their energy-to-magnitude

parameter Q. The last column of Table 1 summarizes

their lack of robustness.

A.2. The Final Regression: Q ¼ 1:5 (Gutenberg

and Richter 1956b), Eqs. (31–40) of Main Text

First, we note that this final study reaches an

extreme complexity in the definition of various

magnitudes, considering no fewer than seven such

scales. They are (1) Gutenberg’s (1935) original one

for locally recorded California shocks, appropriately

renamed a local magnitude ML; (2) the surface-wave

magnitude MG
s introduced by Gutenberg and Richter

(1936) and formalized by Gutenberg (1945a); (3) the

teleseismic body-wave magnitude mB defined by

Gutenberg (1945b, c); (4), its value corrected to MB

to make it more compatible with MG
s ; (5) conversely,

an ms applying the opposite correction to MG
s in order

to make it compatible with mB; (6) a unified

magnitude M (without subscript), consisting of a

‘‘weighted mean’’ between MB and MG
s (but with no

details provided about the weighting process); and (7)

a corresponding, ‘‘final’’ weighted mean m (without

subscript) between mB and ms. We have used the

temporary notation MG
s to emphasize that this mag-

nitude (2) is not a priori equivalent to the Prague Ms

later defined by Vaněk et al. (1962), since the former

measures an amplitude A and the latter the ratio A/T

of amplitude to period; however, because of the

prominence of 20-s waves in standard long-period

teleseismic records, the two approaches are largely

compatible; in addition, we note the similarity in
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distance corrections between MG
s [1:656 log10 D as

opposed to 2 log10 D in Gutenberg and Richter

(1936)] and the Prague Ms (1:66 log10 D), even

though the Prague group did consider many previ-

ously proposed values of the slope (G. Purcaru, pers.

comm., 1988), ranging from 1.31 (Nagamune and

Seki 1958) to 1.92 (Bonelli and Esteban 1954). As a

result, the two scales may indeed be essentially

equivalent, allowing us to henceforth drop the

superscript ‘‘G.’’

Among the critical issues regarding the derivation

of Q ¼ 1:5 by Gutenberg and Richter (1956b), we

first address the effect of using (33) on the variable r6

defined in Sect. 4.1, and characterizing the variation

of the dominant period T0 with magnitude. By

comparison with (29), and assuming l004 can be

neglected, Eq. (33) leads to

r6 ¼ 1 � l4

r1

¼ 0:2; ðA:3Þ

in good agreement with r6 ¼ 0:22 as computed in

Sect. 4.1 with the first combination

(r2 ¼ 1:8; r3 ¼ 0:25) of parameters used by Guten-

berg and Richter (1942). However, Eq. (33) regresses

linearly with a slope l4 ¼ 0:7 between magnitudes of

1 and 9, but 0.66 between 5.5 and 8.5. The

(a) (b)

(c)

Figure 6
Variation of a slope Q defined in (1), b inverse slope 1=r8 defined in (A.1), and c slope r7 defined in (30), as a function of the empirical slope

parameters r2 (in abscissa) and r3 (in ordinate). Each frame uses a different palette, reproduced at its bottom. The bull’s eye symbols refer to

the first combination ðr2 ¼ 1:8; r3 ¼ 0:25Þ, used by Gutenberg and Richter (1942), the centered triangles to the second combination [r2 ¼ 4

as suggested by modern strong-motion studies; r3 ¼ 0:32 as used by Gutenberg and Richter (1956a)]
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corresponding values for r6 would be significantly

altered, to 0.30 and 0.34, respectively.

We then consider the parameter l5 defined in

(36), which takes the value 0.4 for l4 ¼ 0:8 and

r3 ¼ 0:32, as proposed by Gutenberg and Richter

(1956a). We find that l5 can range from 0.31 under

the first combination to as much as 0.48 for

(r3 ¼ 0:32; l4 ¼ 0:66). Finally, excluding the lone

datum for the barely detectable shock (Richter and

Nordquist 1948) reduces the regressed slope l5 to the

intermediate value 0:36 � 0:09.

Next, we focus on Eq. (38), defining l6 ¼ 2:4,

perhaps the most crucial step on the way to Q ¼ 1:5.

With l3 identically equal to 2, l6 is controlled by l5,

itself the ratio of r3 to l4 (37). While Fig. 1 of

Gutenberg and Richter (1956a) suggests an accept-

able fit of (2) to a dataset of 21 points, their formal

regression yields a higher slope (l6 ¼ 2:57 � 0:19),

whose error bar includes the value 2.4, but which is

strongly controlled by Richter and Nordquist’s (1948)

minimal datum mentioned above, and by a nuclear

test at Bikini, which clearly does not belong in a

dataset examining the properties of earthquake

sources. A regression of the remaining 19 points

results in a greater, poorly constrained slope

ðl6 ¼ 3:00 � 0:33Þ.
As summarized in Table 2, we conclude that, as

in the case of their earlier calculation (Q ¼ 1:8), the

slope Q ¼ 1:5 obtained by Gutenberg and Richter

(1956b) is not robust when considering the various

assumptions underlying it in the context of modern

seismological theory.

A.3. Discussion and Conclusion

Given the empirical nature of the slopes r2

(relating magnitude to acceleration) and r3 (magni-

tude and duration), it would be in principle possible

Figure 7
Variation of slope Q as computed in Gutenberg and Richter (1956b), as a function of the slopes l5 and l7 defined in (36) and (38). The bull’s

eye symbol identifies the parameters used by the authors, and the solid line the locus of other combinations yielding Q ¼ 1:5. For reference,

the dashed line similarly identifies the locus of Q ¼ 1
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to read Fig. 6 backwards, i.e., to investigate which

values of r2 and r3 would be necessary to obtain the

parameter Q ¼ 1:5 proposed by Gutenberg and

Richter (1956b) (we recall that the slopes r1, r4,

and r5 must have their fixed values of 1, 2, and 2,

respectively). We are motivated by the fact that the

slope r2 for example, relating acceleration to mag-

nitude, is documented from modern studies to be very

poorly constrained and indeed could be very high; the

‘‘duration’’ slope r3 is also poorly constrained by

strong-motion studies.

In this context, some constraints could, at least in

principle, come from the parameters r8 and r7, which

may be expected to take predictable values under

seismic laws. But we have seen that the definition of

r8 runs into the problem of saturation of acceleration

with earthquake size (r8 could even be negative);

only the slope r7 relating the (dominant) period T0 to

energy bears some legitimate hope of obeying scaling

laws (with r7 ¼ 1=3), since it relates two quantities

of a fundamentally physical nature, which would be

expected to scale predictably with earthquake size.

Figure 6c shows that r7 ¼ 1=3 will require extreme

values of both r2 (greater than 5) and r3 (less than

0.2), clearly very different from those used by

Gutenberg and Richter (1956a), but perhaps not

impossible; incidentally, they will result in Q� 1:4.

However, the above discussion has shown that the

various quantities measured by Gutenberg and

Richter are all of a high-frequency nature (if for no

other reason, because of the instruments they used in

the near field), and thus sensitive to effects such as

the fine structure of the source [e.g., large hetero-

geneities of slip on the fault plane especially for the

largest sources (Lay et al. 2011)]; as a result, the

corresponding slopes, such as r7, may depart signif-

icantly from their theoretical values. In conclusion,

the derivation of Q ¼ 1:8 proposed by Gutenberg and

Richter (1942), and corrected to 1.6 by Gutenberg

and Richter (1956a), stems from a particular choice

of critical slopes (r2; r3), which may represent best

fits obtained empirically from then available datasets,

but which are neither robust, given now available

strong-motion datasets, nor justifiable theoretically

under the canons of modern source theory.

A similar approach could be attempted with the

slopes l5 and l7, in search of constraints on Q ¼ 1:5

as derived by Gutenberg and Richter (1956b).

Figure 7 examines systematically the dependence of

Q on those empirical parameters. Our discussion in

Sect. 4.2 has shown that l5 ¼ 0:4 could be either

under- or overestimated, with values between 0.5 and

0.3 being plausible. As for l7, while the value 0.63,

reported by Gutenberg and Richter (1956b), is in

excellent agreement with the slope of 2/3 expected

under the first stage of saturation, where mB (but not

yet Ms) would have started to feel the effects of

source finiteness, Fig. 8 predicts that the slope 2/3

should apply only at low magnitudes (Ms\5), with

significantly lower values expected for larger earth-

quakes. A combination of l5 ¼ 0:3 and l7 ¼ 0:5

would yield Q ¼ 1:15. Also, Gutenberg and Richter

(1956a) note that a particular operational algorithm

applies to measurements of the 1952 Kern County

aftershocks; when those are excluded from the dataset

in their Fig. 9, the slope l7 falls to 0.57 and Q to 1.37

(keeping l5 ¼ 0:4Þ.
Finally, we note that, even though the authors had

introduced nonlinear terms [e.g., in (35)], the

Ms

m
b

(m
B

;
m

)

1

2/3

1/3
0

Full Saturation
Ms = 8. 22; mb = 6. 0

→

m
= 0. 63 M s

+ 2. 5

Figure 8
Variation of mb as a function of Ms as predicted from a

combination of (19) and (20) (solid dots). The theoretical slopes

are indicated in black for each regime of partial or total saturation.

Superimposed in red is the best fit (38) obtained for m versus Ms by

Gutenberg and Richter (1956b), in blue the earlier regression by

Gutenberg and Richter (1956a), and in green their fit to the 1952

Kern County aftershocks
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derivation of Q ¼ 1:5 ignores them. In this context, it

is interesting to note that Gutenberg and Richter

(1956a; p. 133) report that their colleague V.H.

Benioff had suggested interpreting the curvature

expressed in many of their graphs (best illustrated

by their Fig. 3) as consisting of ‘‘two straight lines

intersecting near magnitudes 5 and 6 [sic],’’ a

visionary remark in view of the later description of

staggered steps in magnitude saturation (Brune and

Engen 1969; Geller 1976). Rather, Gutenberg and

Richter elected to keep a quadratic form for (33), and

then ignored the nonlinear terms in their derivation of

Q ¼ 1:5 (Gutenberg and Richter 1956b).
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