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Abstract GRACE satellites have detected regional‐scale preseismic, coseismic, and postseismic gravity
changes associated with great earthquakes during the GRACE era (2002‐2017). Earthquakes also excite
global‐scale transient gravity changes associated with free oscillations that may be discerned for a few days.
In this study, we examine such global gravity changes due to Earth's free oscillations and quantify how they
affect GRACE measurements. We employ the normal mode formalism to synthesize the global gravity
changes after the 2004 Sumatra earthquake and simulate the (gravitational) free oscillation signals
manifested in the GRACE K‐band ranging (KBR) measurements. Using the Kaula orbit perturbation
theory, we show how GRACE inter‐satellite distances are perturbed through a complex coupling of
eigenfrequencies of the normal modes with the Earth's rotation rate and the GRACE satellites' orbital
frequency. It is found that a few gravest normal modes can generate range‐rate perturbations as large as
0.2 μm/s, which are comparable to actual errors of GRACE KBR ranging and accelerometer instruments.
Wavelet time‐frequency analysis of the GRACE KBR residual data in December 2004 reveals the existence
of a significant transient signal after the 2004 Sumatra earthquake. This transient signal is characterized
by a frequency of ~0.022 mHz that could be potentially associated with the largest excitation due to the
“football”mode of the Earth's free oscillation. However, the results are also affected by low‐frequency noise
of the GRACE accelerometers. Improved space‐borne gravitational instrumentation may open new
opportunities to study the Earth's interior and earthquakes independently from global
seismological analysis.

1. Introduction

The Gravity Recovery and Climate Experiment (GRACE)missionmeasured the time‐variable gravity field of
the Earth with unprecedented spatial and temporal resolutions for more than 15 years from April 2002 to
October 2017 (Tapley et al., 2004). By measuring temporal variations of the gravity field, GRACE tracked
how terrestrial water, ocean, atmosphere, ice sheets/glaciers, and solid Earth masses are redistributed in
the Earth system (e.g., Cazenave & Chen, 2010). The GRACE Follow‐On (GRACE‐FO) mission, launched
on 22 May 2018, is carrying on the legacy of its predecessor with enhanced instrumentation (Webb, 2018).

Earthquakes cause gravity changes by deforming the Earth and changing ambient densities of the crust and
mantle. GRACE detected regional‐scale coseismic and postseismic gravity changes after recent great
(Mw>8.0) earthquakes such as the 2004 Sumatra (Indonesia) earthquake (e.g., De Linage et al., 2009; Han
et al., 2006) and the 2010 Maule (Chile) earthquake (e.g., Han et al., 2010; Heki & Matsuo, 2010), as well
as strike‐slip faulting events such as the 2012 Indian Ocean earthquake (e.g., Han et al., 2015).
Furthermore, GRACE detected a migration pattern of gravity changes due to deep and crustal processes a
few months prior to the 2011 Tohoku (Japan) earthquake (Panet et al., 2018). Studies of preseismic,
coseismic, and postseismic gravity changes from GRACE are based primarily on the analysis of Level‐2
(L2) monthly mean solutions of the Earth's gravity field represented in terms of spherical harmonic (SH)
coefficients of the geopotential field.

At shorter time scales, earthquakes also yield transient global‐scale gravity changes by exciting free
oscillations of the Earth. Earth's free oscillations are standing waves that only exist at discrete
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frequencies and they are classified into spheroidal and toroidal modes (Woodhouse & Deuss, 2007).
Toroidal modes do not yield change in volume (or density) nor radial deformation, and thus, they do
not change the Earth's gravitational field. Ground gravimeters were first used to detect the Earth's free
oscillations during the 1960 Chilean earthquake (Ness et al., 1961), and more recently, for example, follow-
ing the 2004 Sumatra earthquake by Rosat et al. (2005). Earth's free oscillations provide a viable source for
understanding the internal density structure of the Earth and source mechanism of earthquakes (e.g.,
Gilbert & Dziewonski, 1975; Masters et al., 1982; Park et al., 2005; Ritzwoller & Lavely, 1995; Stein &
Okal, 2005).

Global gravity changes such as from the Earth's free oscillations perturb the orbital trajectory of satellites.
The primary aim of this paper is to put forward the principles for modeling and observing such transient
gravitational perturbations from GRACE satellites orbiting at ~500 km above the Earth's surface. Our sec-
ondary aim is to carry out a thorough feasibility study, using both synthetic and actual data analysis, to
see if GRACE could detect the transient perturbations after the great 2004 Sumatra earthquake. Since the
Earth's free oscillations are predicted to be detected only for a few days after earthquakes, GRACE L2
monthlymean solutions are not appropriate for studying this problem. Instead, we examine transient gravity
changes due to free oscillations manifested in the instantaneous Level‐1B (L1B) K‐band ranging (KBR) data
of the GRACE mission. GRACE KBR data comprise relative orbit perturbations in the form of inter‐satellite
range, range‐rate or range‐acceleration between two satellites separated over a distance of ~220 km. We also
note that transient gravitational free oscillation signals could contaminate the GRACE gravity and mass
redistribution products through aliasing of the high‐frequency signals into the monthly mean solutions
(e.g., Han et al., 2004).

We use the normal mode summation scheme to model and analyze the gravitational change caused by the
Earth's free oscillations (Gilbert, 1970). This scheme has been employed to synthesize the transient seismic
waves (e.g., Gilbert & Dziewonski, 1975; Kanamori & Cipar, 1974) and the permanent coseismic deforma-
tion (Pollitz, 1996). Similarly, permanent coseismic gravity changes can also be represented by the normal
mode summation of gravitational potential (Chao & Gross, 1987; De Linage et al., 2009; Gross & Chao,
2006; Han et al., 2013). In this study, we employ the Earth's normal mode formalism, as introduced for
the first time by Chao and Gross (1987), to synthesize the transient gravity signals associated with the free
oscillations excited by the great Sumatra earthquake of 26 December 2004, which is the largest earthquake
recorded over the GRACE era (2002‐2017).

As the principal ingredient of our procedure for studying free oscillations using GRACE satellites, we show
how periodic variations in the Earth's gravity field corresponding to normal modes are mapped into the L1B
KBR measurements. In other words, we describe how GRACE satellites sample the Earth's free oscillations.
To that end, we use the Kaula representation of along‐track functionals in terms of orbital coordinates
(Kaula, 1966). Our analytic results of the gravitational excitation, as measured by GRACE satellites, are vali-
dated by independent numerical orbit integration simulating the along‐track perturbations in the GRACE
orbital trajectory. Finally, we analyze the actual GRACE KBR data for detecting possible transient gravita-
tional changes by the 2004 Sumatra earthquake.

The paper is organized as follows. In section 2, we review the normal mode summation scheme for global
gravitational potential changes induced by earthquakes. In section 3, we quantify surface gravity changes
in terms of geoid undulation and gravity disturbance. The analytic model of gravitational excitation in the
along‐track range and range‐rate due to free oscillations is derived in section 4. This section also deals with
the quantification of along‐track perturbations due to the gravest normal modes and their comparison with
the GRACEmeasurement error. Section 6 presents results of analyzing actual GRACE KBR data for possible
detection of the low‐frequency free oscillation excited by the 2004 Sumatra earthquake. Conclusions are
drawn and ongoing, and future gravimetric observations with satellite capabilities are discussed in
section 6.

2. Normal Mode Synthesis of Gravitational Potential Change

We describe the excitation of spheroidal modes of the Earth's gravitational potential by an earthquake
point source model. As stated earlier, toroidal modes do not excite the gravity field of the Earth.
Furthermore, GRACE measurements are not sensitive to gravitational changes of SH degree 0, as
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excited by, for example, the “breathing” mode 0S0 (e.g., Park et al., 2005), and SH degree 1, as excited by,
for example, the Slichter mode 1S1 (e.g., Ding & Chao, 2015). Therefore, these modes are not considered
in this paper. Han et al. (2013) used the formalism of the Earth's normal modes to study permanent
coseismic changes of the gravitational potential after earthquakes. In this paper, we exploit the same
formalism to study transient gravitational potential changes at seismic frequencies. We start by
considering a coordinate frame in which the point source (at radius rs) is placed at the polar axis and
the prime meridian is oriented along the local south. In such a frame, gravitational potential change
δV at radius r (r ≥ a), co‐latitude θ, and longitude λ, and at time t after the earthquake is formulated
as (Han et al., 2013):

δV r; θ; λ; tð Þ ¼ GM
a

∑
∞

l¼0

a
r

� �lþ1
∑
2

m¼0
Plm cosθð Þ δClm tð Þ cosmλþ δSlm tð Þ sinmλf g (1)

where SH orderm is limited to 0, 1, and 2 for a point source double‐couple. In equation (1), a is the radius of
the spherical Earth, GM is the product of gravitational constant and the Earth's mass, and Plm is the asso-
ciated Legendre function of SH degree l and order m.

The time‐dependent and dimensionless coefficients δClm(t) and δSlm(t) (for m = 0, 1 and 2) are obtained by
summation of spheroidal modes (eigenfunctions) of all possible overtones n as follows:

δCl0 tð Þ¼∑
n
nδCl0n f l tð Þ (2a)

δCl1 tð Þ¼∑
n
nδCl1n f l tð Þ (2b)

δSl1 tð Þ¼∑
n
nδSl1n f l tð Þ (2c)

δCl2 tð Þ¼∑
n
nδCl2n f l tð Þ (2d)

δSl2 tð Þ¼∑
n
nδSl2n f l tð Þ (2e)

where the time‐history function n fl(t) of each spheroidal mode is defined by

n f l tð Þ ¼ 1− cos nωlt
� �

exp
−nωlt
2nQl

� �
(3)

The first term in equation (3; expressed as “1”) represents the permanent (gravity) change, while the second
term describes the transient oscillation with the eigenfrequency nωl (=2π/nTl, where nTl is the period) and
the attenuation factor nQl (Aki & Richards, 2002).

Describing the earthquake point source by a deviatoric moment tensor with components (Mrr, Mrθ, Mrλ,
Mθθ − Mλλ, and Mθλ), the gravitational potential coefficients of each spheroidal mode are obtained as

nδCl0 ¼ a
GM

−Mrr

2

� �
nPl að ÞnK0

l rsð Þ (4a)

nδCl1 ¼ a
GM

Mrθð ÞnPl að Þn K1
l rsð Þ (4b)

nδSl1 ¼
a

GM
Mrλð ÞnPl að Þn K1

l rsð Þ (4c)

nδCl2 ¼ a
GM

Mθθ−Mλλ

2

� �
nPl að Þn K2

l rsð Þ (4d)
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nδSl2 ¼
a

GM
Mθλð ÞnPl að Þn K2

l rsð Þ (4e)

where nPl is the gravitational potential component of the eigenfunctions, introduced by Alterman et al.
(1959) and often given as y5 in other seismology contributions (e.g., Saito, 1967). In equation (4), we eval-
uate nPl at the Earth's surface (r = a) so that the set of the SH coefficients represents the geopotential field
at r = a.

Equation (4) makes use of the excitation functions nK
0
l , nK

1
l , and nK

2
l , respectively, for the source with SH

order m = 0, m = 1, and m = 2 (Dahlen, 1980; Nissen‐Meyer et al., 2007). They are equivalent to K0, K1,
and K2 of Kanamori and Cipar (1974), used to express the vertical displacements of the spheroidal modes.
By rewriting the excitation functions in terms of eigenfunctions of vertical and horizontal deformation

(nUl and nVl, respectively) and their radial derivatives ( dnUl

dr and dnVl

dr ) evaluated at the source radius

(r = rs), we obtain

nK
0
l rsð Þ ¼ 2lþ 1

4πnEl

2nUl rsð Þ
rs

−
2dnUl rsð Þ

dr
−
l lþ 1ð ÞnVl rsð Þ

rs

� �
(5a)

nK
1
l rsð Þ ¼ 2lþ 1

4πnEl

nUl rsð Þ
rs

− nVl rsð Þ
rs

þ dnVl rsð Þ
dr

� �
(5b)

nK
2
l rsð Þ ¼ 2lþ 1

4πnEl

nVl rsð Þ
rs

� �
(5c)

where the energy integral of each mode is computed in its kinetic form through nEl ¼ nω
2
l ∫

a

0ρ rð Þ
nU

2
l rð Þ þ l lþ 1ð ÞnV2

l rð Þ� 	
r2dr with ρ(r) being the radially variable density.

Equations (1) through (5) are exactly identical to the vertical displacement component of spheroidal oscilla-
tionsUr, equations (5)‐(8) of Kanamori and Cipar (1974), except for the fact that in this study, the eigenfunc-
tions of gravitational potential nPl (or y5 of a given n and l) replace the eigenfunctions of vertical
displacement y1 of Kanamori and Cipar (1974).

As stated earlier, equation (1) is formulated in a particular coordinate frame with the source at the polar axis.
However, in geodesy, expansion of gravitational potential in terms of SH basis functions is conventionally
formulated in the Earth‐centered Earth‐fixed (ECEF) frame with its z axis through the north pole and its
x axis through the intersection of the Greenwich meridian and the equator. To rewrite equation (1) in the
ECEF frame, the SH coefficients should be transformed from the original to the ECEF frame using the rota-
tion angles based on geographic location of the earthquake point source. Transformation of SH coefficients
under rotation is done using Wigner D‐functions (e.g., Sneeuw, 1992; Wigner, 1959). In the ECEF frame, the
geopotential coefficients beyond SH order m = 2 become non‐zero and equation (1) is reformulated into

δV r; θ; λ; tð Þ ¼ GM
a

∑
∞

l¼0

a
r

� �lþ1
∑
l

m¼0
Plm cosθð Þ ΔClm tð Þ cosmλþ ΔSlm tð Þ sinmλf g (6)

ΔClm tð Þ ¼ ∑
n
nΔClmn f l tð Þ (7a)

ΔSlm tð Þ ¼ ∑
n
nΔSlmn f l tð Þ (7b)

where nΔClm and nΔSlm for each n, l andm are obtained by rotation of the five coefficients nδCl0,nδCl1,nδSl1,

nδCl2, and nδSl2 given in equation (4); see Stein and Geller (1977) and Han et al. (2013) for details. Please
refer to Chao and Gross (1987) for an alternative formulation of the normal mode summation of gravita-
tional potential that does not make use of the coordinate frame rotation.

Equation (5) is evaluated using the eigenfunctions and their radial derivatives of the spheroidal modes,
which can be pre‐determined from an elastic Earth model. In this study, we use a spherically
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symmetric, nonrotating, elastic, and one‐dimensional Earth model,
namely, Preliminary Reference Earth Model (PREM; Dziewonski &
Anderson, 1981). We use the publicly available software MINEOS
(http://geodynamics.org/cig/software/mineos/), developed by Guy
Masters (Masters et al., 2014; see also Gilbert & Backus, 1966, and
Woodhouse, 1980) to compute the numerical tables of spheroidal modes
of radial and lateral deformation and gravitational potential changes

(nUl, nVl, nPl) and their radial derivatives (dnUl

dr ,
dnVl

dr , and
dnPl

dr ) evaluated

at different radii, along with their corresponding eigenfrequencies nωl

as well as attenuation factors nQl. After normalizing the set of the
MINEOS eigenfunctions to be suitable for use in equation (4), we com-
pute the SH coefficients of gravitational potential change for each indi-

vidual normal mode. Care must be taken not to use spheroidal modes computed with large uncertainties
due to numerical problems. Details of MINEOS mode computation and its numerical stability can be
found in Masters et al. (2014).

3. Seismic Perturbation in Surface Gravity

We computed the spheroidal normal modes for the degree l from 2 to 50 (wavelengths longer than 800 km),
and for the period nTl from ~54 min (associated with the so‐called “football”mode 0S2) down to 10 s. In total,
about 120,000 modes were computed and a handful of them, particularly the high‐frequency ones, are not
numerically valid, and thus, not used.

As the first step, we evaluated the normal mode computation results by summing all valid modes in a brute

force way to compute the “static”Green's functions of the geopotential at the Earth surface (r= a),∑
n
nK

0
l rsð Þ

nPl að Þ,∑
n
nK

1
l rsð ÞnPl að Þ, and∑

n
nK

2
l rsð ÞnPl að Þ, as in Han et al. (2013). These results are compared with the ones

directly evaluated from the solutions of the equations of equilibrium of the deformed Earth (Piersanti et al.,
1995; Pollitz, 1992; Smylie & Mansinha, 1971). Because the vertical deformation also plays a significant role
in gravity change (Han et al., 2013), we do the comparison for the “static” Green's functions of the vertical

deformation, ∑
n
nK

0
l rsð ÞnUl að Þ, ∑

n
nK

1
l rsð ÞnUl að Þ, and ∑

n
nK

2
l rsð ÞnUl að Þ, as well.

Figure S1 in the supporting information presents results of the comparison of the geopotential (top panels)
and the vertical deformation (bottom panels) in terms of spectrum of the “static” Green's functions, for the
case of the source with SH orderm = 0,m = 1, andm = 2 at depth of 20 km (rs = a – 20 km). Apart from the
slight degradation in the case of vertical deformation for the case ofm= 0 andm= 1, which is very likely due
to numerical instability of individual mode computation, agreement between the normal mode summation
and the equilibrium solution is satisfactory.

Using the double‐couple solution from Stein and Okal (2005) for the 2004 Sumatra earthquake, SH coeffi-
cients of geopotential change due to individual normal modes were computed. Table 1 shows an example
of the computed SH coefficients along with their periods and attenuation factors for the 0S2 and 0S3 spher-
oidal modes. Next, we evaluated temporal changes of geoid undulation δN and gravity disturbance δg using
all modes up to 100 mHz (or 10 s in terms of period) and down to 800 km in wavelength as follows
(Heiskanen & Moritz, 1967):

δN θ; λ; tð Þ ¼ a∑
50

l¼2
∑
l

m¼0
Plm cosθð Þ ΔClm tð Þ cosmλþ ΔSlm tð Þ sinmλf g (8)

δg θ; λ; tð Þ ¼ GM
a2

∑
50

l¼2
lþ 1ð Þ ∑

l

m¼0
Plm cosθð Þ ΔClm tð Þ cosmλþ ΔSlm tð Þ sinmλf g (9)

Figures 1a and 1b show the predicted transient changes in geoid undulation and gravity disturbance, respec-
tively, evaluated every 15 min over the first couple of hours, and at 3, 6, 12, and 24 hr after the 2004 earth-
quake. The changes are as large as a few mm of geoid and several μGal (10‐8 m/s2) of gravity disturbance

Table 1
Spherical Harmonic Coefficients of Gravitational Potential Change Due to
the 0S2 and 0S3 Spheroidal Modes, Along with Their Period (nTl) in
Minutes and Attenuation Factor (nQl).

nSl n l m nΔClm nΔSlm nTl nQl

0S2 0 2 0 1.597 × 10−11 0 53.895 509.682

0S2 0 2 1 1.507 × 10−12 −7.047 × 10−12 53.895 509.682

0S2 0 2 2 2.801 × 10−11 3.936 × 10−12 53.895 509.682

0S3 0 3 0 3.685 × 10−12 0 35.576 417.550

0S3 0 3 1 −1.520 × 10−12 1.161 × 10−11 35.576 417.550

0S3 0 3 2 5.386 × 10−12 −2.898 × 10−12 35.576 417.550

0S3 0 3 3 −4.028 × 10−12 1.641 × 10−11 35.576 417.550
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Figure 1. Transient oscillations of (a) geoid undulation and (b) gravity disturbance over the first 24 hr after the 2004
Sumatra earthquake, computed using normal mode summation of modes up to the frequency of 100 mHz and the
spherical harmonic degree of 50. The 2004 Sumatra earthquake occurred at 00:58:53 UTC on 26 December, with an
epicenter off the west coast of northern Sumatra. Each panel shows change at the indicated time after the earthquake
rupture initiation.
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during the first 2 hr. Oscillatory gravitational changes converge to the antipode of the earthquake epicenter
to the west of Northern Peru roughly 45 min after the earthquake, which is incidentally comparable to the
group time for the fastest overtone Rayleigh waves to reach the antipode. This figure also shows that most of
the high‐frequency modes disappear in the first 24 hr. It can also be seen that the strongest transient gravity
changes occur at the epicenter of the earthquake and its antipode.

Although most of the spheroidal modes attenuate quickly and disappear in a couple of hours after the earth-
quake, there are 11 gravest modes with ~1 mHz or lower frequency that can last longer than a day with an
amplitude decay of 37% (e−1) or less in a day. These 11 modes along with their periods (in minutes) and
attenuation factors are 0S2 (0T2 ≅ 54, 0Q2 ≅ 509), 0S3 (0T3 ≅ 36, 0Q3 ≅ 418), 0S4 (0T4 ≅ 26, 0Q4 ≅ 373), 0S5
(0T5 ≅ 20, 0Q5 ≅ 355), 0S6 (0T6 ≅ 16, 0Q6 ≅ 348), 0S7 (0T7 ≅ 14, 0Q7 ≅ 342), 1S2 (1T2 ≅ 25, 1Q2 ≅ 310), 1S3
(1T3 ≅ 18, 1Q3 ≅ 283), 2S3 (2T3 ≅ 13, 2Q3 ≅ 415), 2S4 (2T4 ≅ 12, 2Q4 ≅ 380), and 3S2 (3T2 ≅ 15, 3Q2 ≅ 365).
The spatial pattern of the geoid excitation by each of these gravest modes is presented in Figure 2. The gra-
vest normal mode 0S2, which is associated with the five SH degree 2 coefficients of n = 0 in equation (7),
causes excitations of as large as 0.5 mm in the geoid. The largest perturbation is found equal around the epi-
center and its antipode for all the modes.

The square root of degree variance of geoid change for the spheroidal modes with the overtone index of 0
(fundamental mode), 1, 2, and 3 were computed and compared with that of the GRACEmonthly uncertainty
in Figure 3. For GRACE, we used the calibrated uncertainty of December 2004 provided by the Release 5
solutions of the Center for Space Research (Bettadpur, 2012). It is found that the globally averaged magni-
tude of geoid excitation by the gravest modes, as characterized by degree variance, may be only a few times
smaller than the uncertainty of monthly global GRACE geopotential data, in the case of 0S2, 0S3, 0S4, 1S2, 1S3,
and 1S4. It is also seen that the spheroidal modes 2Sl have the largest power between SH degree 6 and 13.

4. Seismic Perturbation in Orbital Trajectory

In this section, we examine earthquake‐induced perturbations in inter‐satellite ranging data as measured by
two GRACE satellites. To be specific, we determine the frequencies at which the GRACE KBR signals are

Figure 2. Geoid change due to the individual gravest spheroidal normal modes of the Earth excited by the 2004 Sumatra
earthquake. The selected 11 gravest modes last longer than a day with the amplitude reduced only to 37% (e−1) or less in a
day. Each mode has different periods of oscillation including ~54 min for the 0S2 mode.
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excited due to gravity field variations induced by spheroidal oscillations of the Earth. The orbital
perturbations caused by the periodic changes in the gravity field such as due to free oscillations are not as
straightforward to understand as the time series of gravity changes on the Earth's surface, simply because
satellites (“receivers” in this case) continuously orbit around the Earth. There must be coupling in the
orbit perturbations between the period of the normal modes and the period of GRACE's motion around
the rotating Earth. Cheng (2002) discussed a similar problem of perturbations in the GRACE KBR data,
but caused by ocean tides.

Excitations in orbital trajectory are better understood using a formalism that treats satellite data as a time
series along the orbit rather than as a function of the spatial coordinates (as in the spherical harmonics form-
alism by equation (6)). To that end, we use the Kaula representation of gravitational potential in orbital coor-
dinates (Kaula, 1966). For a circular orbit with zero eccentricity, equations (6) and (7) can be reformulated
into (Kaula, 1966):

δV r;u;Λ; tð Þ ¼ GM
a

∑
∞

l¼2

a
r

� �lþ1
∑
l

m¼0
∑
l

k¼−l
Flmk ið Þ αlm tð Þ cosψmk tð Þ þ βlm tð Þ sinψmk tð Þf g (10)

αlm tð Þ ¼
ΔClm tð Þ
−ΔSlm tð Þ

" #l−m¼even

l−m¼odd

(11a)

βlm tð Þ ¼
ΔSlm tð Þ
ΔClm tð Þ

" #l−m¼even

l−m¼odd

(11b)

where Flmk(i) is the inclination function, i is the orbit inclination, r is the distance of satellite from the Earth's
center, u is the argument of latitude, and Λ is the longitude of the ascending node in the ECEF frame. The
latter two are defined as u(t) = ω(t)+M(t) and Λ(t) = Ω(t) − Θ(t), where ω is the argument of perigee (not to
be confused with eigenfrequency of the normal modes),M is the mean anomaly, Ω is the right ascension of
the ascending node, andΘ is the Greenwich sidereal time. Wemake use of the index k (which runs from –l to
l in steps of 2) in equation (10) instead of the p‐index (which runs from 0 to l in unit steps) used by Kaula
(1966). This is because the index k has the exact meaning of azimuthal order or SH order in the satellite
frame (Sneeuw, 2000), and it is more appropriate for describing excited frequencies in the along‐track obser-
vations. The angular argument ψmk(t) is given by

ψmk tð Þ ¼ ku tð Þ þmΛ tð Þ (12)

Equation (10) explicitly represents the time series of the along‐track gravitational potential perturbations as
a function of the free oscillation forcing ΔClm(t) and ΔSlm(t), and of the argument ψmk(t). The free

Figure 3. Square root of degree variance of geoid change computed from earthquake geopotential change coefficients
(nΔClm and nΔSlm) of the spheroidal modes with overtone n = 0 (red), n = 1 (blue), n = 2 (green) and n = 3 (purple).
For comparison, square root of degree variance of the GRACEmonthly uncertainty of December 2004 from CSR Release 5
solutions is also shown (black).
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oscillations are characterized by their own eigenfrequencies nωl, while the satellite is characterized by its

basic frequencies _u and _Λ. _u and _Λ are basic frequencies of a satellite in a nominal circular orbit with a con-
stant radius r and inclination i. The nominal orbit is secularly precessing due primarily to the Earth's flatten-

ing J2 (¼ −
ffiffiffi
5

p
C20). The secular rates of u and Λ caused by J2 are obtained as (Kaula, 1966; Sneeuw, 2000)

_u ¼ _ωþ _M ¼ n0 þ 3
2
n0J2

a
r

� �2
4 cos2i−1
� �

(13)

_Λ ¼ _Ω− _Θ ¼ −
3
2
n0J2

a
r

� �2
cosi−

2π
day

(14)

with n0 being themeanmotion of the satellite. For the GRACE orbit in December 2004 (with altitude of ~470
km and inclination of ~89°), we have _u≅0:18 mHz and _Λ≅−0:01mHz. In the case of GRACE, since _Ω is four
orders of magnitude smaller than _Θ, we sometimes refer to _Λ as the Earth's rotation rate in the remainder of
this paper. Now we examine the geopotential and orbit excitations by some of the gravest normal modes of
the Earth.

4.1. Along‐Track Excitations Due to the “Football” Mode 0S2

We start with examining the excitations by the “football”mode, which is the longest‐lasting one (except for
the radial modes with l = 0, which are not considered in this study) and also generates the largest perturba-
tions in surface gravity (see Figure 3). As described in section 2, coefficients 0ΔC2m(t) and 0ΔS2m(t) (m= 0, 1,
and 2) consist of two terms that describe (1) permanent (Heaviside step) changes represented by0ΔC2m

and 0ΔS2m and (2) transient changes represented by −0ΔC2m cos 0ω2 t
� �

exp −0ω2 t
20Q2

� �
and −0ΔS2m cos 0ω2 t

� �
exp −0ω2 t

20Q2

� �
. As a result, we have two classes of excited frequencies: (1) those due to permanent changes in

geopotential and (2) those due to transient changes. The second class incorporates eigenfrequencies of the
normal modes. We refer to the first class as the “permanent excited frequencies” in the following, while
the second class is simply called the excited frequencies.

First, we derive the “permanent excited frequencies” in geopotential due to the 0S2 mode. Incorporating the
static coefficients 0ΔC2m and 0ΔS2m in equation (10) results in

GM
a

a
r

� �3
∑
2

m¼0
∑
2

k¼−2
Flmp ið Þ alm cosψlmp tð Þ þ βlm sinψlmp tð Þψ

n o
¼ GM

a
a
r

� �3
×

½F2;0;1 ið Þ0ΔC2;0

þ F2;0;0 ið Þ þ F2;0;2 ið Þ� 	
0ΔC2;0 cos 2 _utð Þ

−F2;1;0 ið Þ0ΔS2;1 cos 2 _uþ _Λ
� �

t
� �þ F2;1;0 ið Þ0ΔC2;1 sin 2 _uþ _Λ

� �
t

� �
−F2;1;1 ið Þ0ΔS2;1 cos _Λt

� �þ F2;1;1 ið Þ0ΔC2;1 sin _Λt
� �

−F2;1;2 ið Þ0ΔS2;1 cos −2 _uþ _Λ
� �

t
� �þ F2;1;2 ið Þ0ΔC2;1 sin −2 _uþ _Λ

� �
t

� �
þ F2;2;0 ið Þ0ΔC2;2 cos −2 _uþ 2 _Λ

� �
t

� �þ F2;2;0 ið Þ0ΔS2;2 sin 2 _uþ 2 _Λ
� �

t
� �

þ F2;2;1 ið Þ0ΔC2;2 cos 2 _Λt
� �þ F2;2;1 ið Þ0ΔS2;2 sin 2 _Λt

� �
þF2;2;2 ið Þ0ΔC2;2 cos −2 _uþ 2 _Λ

� �
t

� �þ F2;2;2 ið Þ0ΔS2;2 sin −2 _uþ 2 _Λ
� �

t
� ��

(15)

Equation (15) shows that in total seven distinct frequencies are excited due to static part of the 0S2 mode.

They are _Λ, 2 _Λ, 2 _u, 2 _u± _Λ, and 2 _u±2 _Λ. Among them, _Λ (approximately once per day) and 2 _Λ (approximately
twice per day) are below 1 cycle‐per‐revolution (CPR). In this study, we focus on the transient changes asso-
ciated with the normal modes. For further discussion on permanent changes in the inter‐satellite range per-
turbation after earthquakes, see Han et al. (2010, 2011).

As the next step, we derive the excited frequencies due to the transient gravitational potential change with
the eigenfrequency of ~0.31 mHz (~54 min) associated with the 0S2 mode. Substituting αlm(t) and βlm(t) from
equations (7) and (11) into equation (10) gives the potential excitation as
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where 0Z2 ¼ exp −0ω2 t
20Q2

� �
. The first nine terms in equation (16) represent five excited frequencies grouped

around 0ω2−2u ̇ . Similarly, the “higher frequency terms” (higher than 1 CPR), which are not explicitly
shown, include excited frequencies grouped around 0ω2 and 0ω2þ2u ̇. They are listed as

0ω2−2 _Λ
� �

; 0ω2− _Λ
� �

; 0ω2; 0ω2 þ Λ̇
� �

; and 0ω2 þ 2 Λ̇
� �

(17)

0ω2 þ 2 _u− _2Λ
� �

; 0ω2 þ 2 _u− _Λ
� �

; 0ω2 þ 2 _u
� �

; 0ω2 þ 2 _uþ _Λ
� �

; and 0ω2 þ 2 _uþ _2Λ
� �

(18)

Equation (16) represents a Fourier series with a finite set of excited frequencies. It shows that the 0S2 mode
excites geopotential changes along the satellite trajectory at 15 distinct frequencies. These 15 frequencies are
the result of linear combination of the satellite angular velocity in the orbital plane _u (~0.18mHz), the Earth's

rotation rate _Λ (~−0.01 mHz), and the normal mode eigenfrequency 0ω2 (~0.31 mHz). Note that since _Λ is
considerably smaller than _u and 0ω2, the 15 excited frequencies appear around three distinct frequencies of

0ω2−2 _u (~0.05 mHz), 0ω2 (~0.31 mHz), and 0ω2 þ 2 _u (~0.67 mHz). Note that this “splitting” of the mode 0S2
into three groups of five singlets is 1 order of magnitude coarser than the splitting due to rotation and
ellipticity, traditionally observed in seismology (Benioff et al., 1961; Ness et al., 1961), whose range does
not exceed ± 0.01 mHz (Okal & Stein, 2009). In this context, it does not seem necessary to include the
rotational and elliptical splitting of the Earth's modes in the present computation.

Thus far, we discussed the excitations in geopotential changes along the orbit, whereas GRACE observes
orbit perturbations as in inter‐satellite range or range‐rate. Nevertheless, it is well known (e.g., Sneeuw,
2000) that a perturbing potential (or force) with a certain frequency causes perturbation in the orbital trajec-
tory at the same frequency. This is simply because orbit perturbations are obtained by linear perturbation
theory, either using the Lagrange planetary equations (e.g., Kaula, 1966; Rosborough, 1986) or the Hill equa-
tions (e.g., Schrama, 1989; Sneeuw, 2000), and in any linear dynamic system, the input and output frequen-
cies are the same. As such, the GRACE range‐rate perturbations due to Earth's free oscillations could be
formulated using an equation of the following form:

δ ρ˙ r;u;Λ; tð Þ ¼ ∑
∞

l¼2
∑
l

m¼0
∑
l

k¼−l
Hδ ρ˙

lmk α
0
lm tð Þ cosψmk tð Þ þ β

0
lm tð Þ sinψmk tð Þ

n o
(19)

α
0
lm tð Þ ¼

ΔClm tð Þ
ΔSlm tð Þ

" #l−m¼even

l−m¼odd

(20a)

β
0
lm tð Þ ¼

−ΔSlm tð Þ
ΔClm tð Þ

" #l−m¼even

l−m¼odd

(20b)

whereHδ ρ˙
lmp is the linear transfer function that maps the along‐track gravitational potential changes to range‐
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rate perturbations in the spectral domain (see equation (3) ofWagner et al., 2006; for details, please also refer
to Wagner, 1987; Kim, 2000; Sneeuw, 2000; Cheng, 2002; Visser, 2005).

We used numerical orbit integration to compute synthetic GRACE inter‐satellite ranging perturbations due
to the 0S2 mode. To that end, reference orbits of the GRACE satellites are numerically integrated based on a
static gravity field of the Earth. Then, the time‐variable geopotential of SH degree‐2 coefficients associated
with the 0S2 mode (see Table 1) are computed following equations (7) and (3), and added to the static gravity
field to compute the perturbed orbits. Finally, perturbations in the inter‐satellite ranging data are computed
as the difference between the reference and perturbed orbits. Figure 4 shows the calculated perturbations
in range, range‐rate and range‐acceleration along the actual GRACE ground tracks for 6 days after the
2004 Sumatra earthquake. The altitude of the satellites is around 470 km in December 2004. Changes of
~2 mm, ~0.2 μm/s, and ~0.1 nm/s2, respectively, in inter‐satellite range, range‐rate, and range‐acceleration
are found over the ~220 km baseline.

Figure 5 presents the time series of the synthetic range and range‐rate perturbations and the power spectral
density (PSD) of the range‐rate time series. The results of numerical integration validate the excited frequen-
cies predicted by our analytic derivation based on the Kaula theory. Peak‐to‐peak variations in the range‐rate
time series reach ~0.5 μm/s. It is seen that due to the slow attenuation of 0S2, the perturbations remain as
significant as half of the initial perturbations even 6 days after the rupture. As predicted, a total of 15 fre-
quencies, found at three distinct frequency bands, excited by the 0S2 mode are clearly identified. The PSD
shows that the large perturbations are found at the five lowest frequencies below 1 CPR (~0.18 mHz), with

the largest one at 0ω2−2u̇−2 _Λ (~0.022 mHz) and the second largest at 0ω2−2u̇ (~0.045 mHz); see also
Figure 6.

In addition to the five excited frequencies 0ω2±m Λ̇ (m = 0, 1, 2) right below the 2 CPR frequency, the other

range‐rate perturbations found near 2 CPR are associated with the “permanent excited frequencies”2 _u±m _Λ.
The “permanent excited frequency” at _Λ should have a negligible amplitude, since F2,1,0(i) ≅ 0 for polar or
near polar orbits such as GRACE.

The free oscillation produces a transient gravitational perturbation that attenuates over time. The 1‐D
frequency analysis based on the Fourier transform does not provide any information about the signal
attenuation. As such, it does not deliver an accurate picture of the phenomena under investigation. The
2‐D time‐frequency representation, on the other hand, shows how nonstationary signals evolve as a function
of time. Therefore, it could serve as amore suitable tool for detection of transient signals. We applied the con-
tinuous wavelet transform approach (e.g., Keller, 2004) to obtain the 2‐D time‐frequency representation of
the range‐rate time series data. As the mother wavelet, the analytic Morse wavelet (Olhede & Walden,
2002) was chosen to generate the 2‐D time‐frequency map, known also as spectrogram. It should be noted
that in wavelet analysis, the trade‐off between temporal and frequency resolutions affects the amplitude
of the generated 2‐D time‐frequencymap (e.g., Chao et al., 2014). Thus, the employed wavelet analysis in this
paper is mainly used for detection of the free oscillations rather than quantification of the amplitudes.

To give a clear picture of non‐stationarity of free oscillations, we focus on the excited frequencies <1 CPR
with larger amplitudes and more distinct frequencies. Figure 6a shows PSD of the synthetic range‐rate

Figure 4. Synthetic GRACE orbit perturbations in terms of inter‐satellite (a) range, (b) range‐rate, and (c) range‐acceleration caused by the gravitational potential
change associated with the 0S2 mode. Results are computed using numerical orbit integration based on 6 days of synthetic data after the 2004 Sumatra earthquake.

10.1029/2019JB017530Journal of Geophysical Research: Solid Earth

GHOBADI‐FAR ET AL. 7493



data due to the 0S2 mode (as in Figure 5) for lower frequencies with the five excited frequencies indicated. The
2‐D time‐frequency map was generated based on the synthetic data from 21 to 31 of December 2004 and is
shown in Figure 6b. As opposed to Figure 6a, wavelet analysis provides information about the starting time
of the transient signal and its attenuation pattern. For example, it can be seen that the magnitude of range‐

rate perturbation at the frequency of 0ω2−2u ̇−2 _Λ reaches 50% of its initial value 6 days after the
earthquake, which mirrors the decay of the mode 0S2, rather than that of the perturbation at its shifted
frequency. It should be mentioned that the PSD of range‐rate data shows five peaks at the frequency band
below 0.1 mHz, while in the 2‐D time‐frequency map only two peaks, corresponding to the largest and
second largest amplitudes in Figure 6a, are visible. This is simply due to the color scale used in Figure 6b.

Figure 6. (a) Power spectral density of the synthetic GRACE range‐rate perturbations due to the 0S2 mode focused at
lower frequencies, and (b) 2‐D time‐frequency map of the synthetic range‐rate data from 21 to 31 December 2004
obtained using the wavelet analysis.

Figure 5. (a) Time‐series of synthetic GRACE inter‐satellite range (red) and range‐rate (blue) perturbations due to the 0S2
mode based on 6 days of data after the 2004 Sumatra earthquake, and (b) the corresponding power spectral density of the
range‐rate perturbations. The vertical dashed black lines indicate the excited frequencies predicted by the Kaula orbit
perturbation theory. There are 15 distinct frequencies excited by the 0S2 mode via coupling of the eigenfrequency (0ω2),
GRACE orbital frequency ( _u), and Earth rotation rate ( _Λ). Other excitations near 2 cycle‐per‐revolution are due to the
permanent gravitational changes after the earthquake.
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4.2. Along‐Track Excitations Due to Other Gravest Modes

Using a similar procedure to the case of the 0S2 mode, it can be shown that the Kaula linear perturbation
theory predicts excitations by the spheroidal mode nSl at the following frequencies:

_ψ nωl

mk ¼ nωl þ k _u±m _Λ
  (21)

where−l ≤ k[2] ≤ l and 0 ≤m ≤ l. Note that “[2]” used with the index k indicates that it runs with steps of 2.
The total number of excited frequencies by the nSl mode is therefore (2l+1) × (l+1). For example, the 0S3
mode excites the following 28 frequencies: 0ω3−3 _u±m _Λ

  , 0ω3− _u±m _Λ
  , 0ω3 þ _u±m _Λ

  , and

0ω3 þ 3 _u±m _Λ
  for m= 0, 1, 2 and 3. It is seen that they are grouped around the main four frequencies of
(0ω3−3u ̇), (0ω3−u̇), (0ω3þu ̇), and (0ω3þ3u ̇).

Figure 7 illustrates other examples of synthetic range and range‐rate perturbations computed using numer-
ical orbit integration and the corresponding PSDs along with the excited frequency predicted from the Kaula
theory, for the fundamental spheroidal modes of 0S3, 0S4, and 0S5. The time series show that these three
modes attenuate faster than 0S2. Similar to 0S2, most of the largest amplitudes occur at lower frequencies
below 1 CPR. Figure 8 shows the examples of the higher overtone (n > 0) spheroidal modes 1S2, 1S3, and

2S4 with a few days of decay time. Compared to the fundamental modes, perturbations are at least one order
of magnitude smaller. Furthermore, all the excited frequencies happen to be above 1 CPR.

Figure 7. Same as Figure 5 but for the case of (a) 0S3, (b) 0S4 and (c) 0S5 modes. The left and right panels show the time
series and power spectral density, respectively. The vertical dashed lines are the frequencies predicted by the Kaula theory.
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4.3. Comparison of Along‐Track Excitations With the GRACE Measurement Error

We compared the range‐rate perturbations with the actual KBR error to see if along‐track excitations due to
the gravest normal modes could be detected by GRACE. To that end, a realistic representation of the actual
error of KBR data provided by Mayer‐Gürr et al. (2018) is used. Using a simulation study, Mayer‐Gürr et al.
(2018) showed that accelerometer and KBR noise dominate the GRACE actual error budget at low and high
frequencies, respectively, while the errors in atmosphere and ocean de‐aliasing L1B (AOD1B) and geophy-
sical background models (such as ocean tides), known as the temporal aliasing error, are the main source in
the mid‐frequency band. To be specific, the KBR and accelerometer instrument noise given by Kim (2000)
fits the GRACE actual error at frequencies above ~10 mHz and below ~0.44 mHz, respectively. The temporal
aliasing error given by Dobslaw et al. (2016) represents the GRACE actual error in the frequency band of
0.44–10 mHz. It is worth mentioning that Flury et al. (2008) showed that when the on‐board heaters were
deactivated, the GRACE accelerometers achieved the expected accuracy given by Kim (2000).

Figure 9 shows the synthetic KBR perturbations due to the 0S2 mode, compared with the temporal aliasing
error and accelerometer noise in terms of inter‐satellite range‐rate for frequencies below 10 mHz. It is seen
that 0S2 generates perturbations that are comparable to or only a few times smaller than the GRACE error at
most of the excited frequencies. The results of comparison for the other gravest normal modes, namely, 0S3,

0S4, 0S5, 1S2, 1S3, and 2S4, are shown in Figures S2 to S7. We extended our analysis by finding the significant
excited frequencies with peaks larger or less than 3 times smaller than the GRACE error; a total of 45 fre-
quencies are identified as reported in Table S1 in the supporting information. Almost all of them have their
frequencies below 1 mHz (~5 CPR). The gravest modes do not generate significant excitations at frequencies
above 1 mHz.

Figure 8. Same as Figure 7 but for the case of (a) 1S2, (b) 1S3, and (c) 2S4 modes. All the excited frequencies by thesemodes
happen to be above 1 cycle‐per‐revolution.
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We primarily focus on the frequency band below 1 CPR to detect any transient gravitational change by free
oscillation, because (1) numerous frequencies are excited within the frequency band of 1–5 CPR due to
various spheroidal modes, and thus, it will be difficult to distinguish one from the other; (2) only the
fundamental spheroidal modes (n = 0) cause excitations in range‐rate below 1 CPR (that is why only
9 out of the 45 significant frequencies listed in Table S1 happen to be below 1 CPR); and (3) the excited fre-

quencies below 1 CPR are most distinct. In particular, we first look for the two frequencies of 0ω2−2u ̇−2 _Λ
(~0.022 mHz) and 0ω2−2u ̇ (~0.045 mHz) excited by the spheroidal mode 0S2. These two are supposed to have
the largest and second largest amplitudes, respectively, among all others.

5. Did GRACE Detect the Earth's Free Oscillations Excited by the 2004
Sumatra Earthquake?

We examined the KBR (post‐fit) range‐rate residual data from GRACE in December 2004 to search for tran-
sient gravitational excitation of the free oscillations after the 2004 Sumatra earthquake (Park et al., 2005;
Stein & Okal, 2005). The reference orbits used to compute the range‐rate residual data are obtained using
a data processing strategy similar to the one adopted by the ITSG‐Grace2016 gravity field solutions
(Mayer‐Gürr et al., 2016). Various force models such as the geopotential model GOCO05S (Mayer‐Gürr
et al., 2015), high‐frequency atmosphere and non‐tidal ocean mass variability model AOD1B (Dobslaw
et al., 2013), and ocean tides model EOT11a (Savcenko & Bosch, 2012), along with the ITSG‐Grace2016
monthly mean solution of December 2004 and nongravitational accelerometer data, are used in numerical
integration to calculate the reference orbits on a daily basis. The post‐fit range‐rate residuals are computed
as the difference between the measured range‐rate data and those computed from the reference orbits.
Please note that coseismic gravity signal is not removed from the residual KBR data after the earthquake
so that the synthetic and actual data analyses are fully consistent.

The non‐gravitational accelerations measured by the GRACE on‐board accelerometers are subject to instru-
ment specific biases and scale factors (Bettadpur, 2009). The conventional approach for calibration of the
accelerometer data is to estimate biases and scale factors on a daily basis. The ITSG‐Grace2016 solutions
employ an alternative approach, which models the variations in the biases every 6 hr using uniform cubic
basis splines (Klinger & Mayer‐Gürr, 2016). The approach based on the 6‐hourly cubic splines may interfere
with the low‐frequency signals below 1 CPR in the KBR residual data, and therefore, it can distort the free
oscillation signal (of our interest) in this frequency band. We computed two sets of post‐fit residual KBR data
using both the conventional and the 6‐hourly cubic splines approaches. In the case of excited frequencies
below 1 CPR, we exploited the KBR data obtained using the conventional method, whereas both sets of
KBR data were analyzed to search for the excited frequencies above 1 CPR.

Figure 9. Comparison of synthetic GRACE range‐rate perturbations due to the 0S2 mode (red) with the actual GRACE K‐
band ranging error. The K‐band ranging error budget is dominated by the accelerometer noise (black) at low frequencies
below ~0.44 mHz and the temporal aliasing error (blue) at the frequency band between ~0.44 and 10 mHz. The low fre-
quency perturbation by the 0S2 mode is very likely to be contaminated by the GRACE accelerometer noise.
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We applied wavelet analysis to the post‐fit range‐rate residual data from 17 to 31 December 2004 obtained by
the conventional accelerometer data calibration method. Figure 10 shows the 2‐D time‐frequency map for
frequencies below 1 CPR. The gravitational free oscillation signals should occur after the earthquake rupture
(at 00:58:53 UTC on 26 December 2004), coincide with the predicted excited frequencies, and attenuate over
time. It can be seen that the 2‐D time‐frequencymap indicates the emergence of such a transient signal on 26
December right after the rupture with a frequency, which is very close to the largest excitation due to the 0S2
mode, namely, 0ω2−2u ̇−2 _Λ (~ 0.022 mHz). The transient signal appears to last for 3 to 4 days after the earth-
quake in the GRACE KBR residual data. All of these indicate that it may be a possible signature of the grav-
itational changes associated with the Earth's free oscillations excited by the great 2004 Sumatra earthquake.

However, there is also inconsistency found between the GRACE KBR data and the synthetic range‐rate: (1)
the amplitude of the range‐rate excitation is a few times larger than the one obtained from the synthetic data
analysis (Figure 6); (2) although two times smaller, a gravitational excitation at the higher frequency of
~0.045 mHz (roughly four times per day) is predicted from the double‐couple source, but not apparent in
the GRACE data; and (3) the GRACE KBR data before the earthquake, especially from 17 to 19
December, seem to show anomalies at a similar frequency of ~0.022 mHz (roughly twice per day).
However, these anomalies found before the earthquake grow (do not attenuate) over time, and thus, they
can be discriminated from transient signals associated with the free oscillations.

We examined a possible contamination caused by the ocean tide model errors at the excited frequency of
0.022 mHz. We tested the ocean tides models FES2014 (Carrère et al., 2015) and EOT08ag, which uses tidal
corrections obtained from several years of GRACE data (Mayer‐Gürr et al., 2012). We also changed the arc
length of orbit integration from 1 to 2 and 3 days to see the effect of different orbit parametrizations. Such
modification in background ocean tidal models and arc lengths did not result in any notable difference from
the one presented in Figure 10 (thus, not shown).

We also analyzed the KBR residual data in the time domain by comparing three days of data before and after
the rupture to see if GRACE captured any identifiable change after the earthquake due to free oscillations.
We applied least‐squares harmonic analysis (e.g., Wells et al., 1985) using the five excited frequencies (below

1 CPR) of the 0S2 mode, namely, 0ω2−2u̇±m _Λ with m = 0, 1, and 2. Figure 11 shows the results in terms of
time series and PSD of the actual KBR data and those obtained from the least‐squares fit. As opposed to the
data before the earthquake, time series of the (smoothed) actual KBR residual data after the earthquake pre-
sent a decaying pattern. Moreover, comparison of the results in terms of PSD shows that the harmonic ana-

lysis provides a better fit to the GRACE KBR data at the frequency of 0ω2−2u̇−2 _Λ after the earthquake
(compare Figure 11b with Figure 11d), which is in agreement with the wavelet analysis. The harmonic fit
of the 0S2 mode to the GRACE data (blue curve in Figure 11) agrees better with its synthesis (red curve) after
the earthquake, particularly in phase. Again, the amplitude of the observed excitations is larger than the one
based on the synthesis with the point source double‐couple solution by Stein and Okal (2005).

Figure 10. 2‐D time‐frequency map of the actual GRACE (post‐fit) range‐rate residual data from 17 to 31 December 2004
(shown for frequencies below 0.125 mHz). A strong transient signal appears in the GRACE data after the rupture on 26
December with a frequency of ~0.022 mHz, which could be associated with the largest excitation due to the 0S2 mode.
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The results presented in Figures 10 and 11 were based on the post‐fit KBR residuals computed from the
monthly mean solution of December 2004. The monthly mean solution of December 2004 includes 6 days
of data after the earthquake, and thus, the obtained post‐fit KBR residuals before the earthquake could be
affected by coseismic and free oscillation signals. To examine this effect, we also computed the post‐fit
KBR residuals based on a sub‐monthly mean solution from GRACE L1B data before the earthquake (i.e.,
from 1 to 25 December 2004) and repeated the same analyses as in Figures 10 and 11. We observed that
the results were the same (not shown). Finally, our analysis to detect excitations in the frequency band of
1 and 5 CPR was polluted by other signals, resulting in difficulty to identify any possible evidence of the
free oscillations.

6. Summary and Outlook

This paper, as the first attempt of its kind, investigated the problem of synthesizing and observing the grav-
itational signature of the Earth's free oscillations using GRACE satellites orbiting at ~500 km above the
Earth's surface. Earth's free oscillations, excited by great earthquakes, generate transient gravitational poten-
tial changes that are predicted to be detected for as long as a few days. Thus, in contrast to coseismic and
postseismic gravity changes that are conventionally studied using the GRACE L2 monthly mean gravity
solutions, the transient gravitational signals are examined with a more fundamental observable of the
instantaneous inter‐satellite KBR (L1B data products) of the GRACE mission.

We employed the normal mode summation scheme to synthesize transient global gravity changes after the
2004 Sumatra earthquake. Quantification of surface gravity changes during the first 24 hr after the earth-
quake indicated excitations of as large as 2 mm and 4 μGal over a broad region in geoid and gravity distur-
bance, respectively. We showed that most of the high‐frequency normal modes diminish significantly after a
couple of hours and the largest excitations in surface gravity were found around the earthquake epicenter
and its antipode. Evaluation of geoid changes due to individual gravest normal modes showed that the

Figure 11. Comparison of the GRACE post‐fit range‐rate residual data for (a and b) 3 days before and (c and d) 3 days after
the 2004 Sumatra earthquake: (a) Based on 3 days of data before the earthquake, this panel shows time series of the low‐
pass filtered GRACE K‐band ranging (KBR) data with cut‐off frequency at 1 CPR in black, the harmonic fit using the five
excited frequencies 0ω2−2u ̇±m _Λ (m = 0, 1 and 2) of the 0S2 mode applied to the actual KBR data in blue, and the same
harmonic fit applied to the synthetic KBR perturbations due to the 0S2 mode in red. (b) Based on 3 days of data before the
earthquake, this panel shows power spectral density of the actual KBR data in black, the harmonic fit to the actual KBR
data in blue, and the harmonic fit to the synthetic KBR perturbations due to the 0S2 mode in red. (c) Same as (a) but based
on 3 days of data after the earthquake. (d) Same as (b) but based on 3 days of data after the earthquake. As opposed to the
data before the earthquake, time series of the GRACE data after the earthquake present a decaying pattern, and also shows
that the harmonic analysis better fits the GRACE KBR data. Most interestingly, the harmonic fit of the 0S2 mode to the
GRACE data agree better with its synthesis (red curve) after the earthquake, particularly regarding phase.
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football mode 0S2 with a period of ~54min and aQ of ~500 causes the largest excitations with a magnitude of
0.5 mm in geoid undulation over a few days.

Such transient gravitational potential changes cause perturbation in the trajectory of satellites orbiting
around the Earth. Precise measurements of range change between two GRACE satellites are used to infer
temporal variations in the Earth's global gravity field. However, analyzing inter‐satellite range changes
associated with free oscillations is not trivial due to the complicated coupling between the eigenfrequency
of the modes, the Earth's rotation rate, and the angular velocity of satellites in the orbital plane. By extending
the Kaula orbit perturbation theory, we developed an analytic model of how the gravitational potential
of a spheroidal normal mode of degree l perturbs the GRACE orbit in terms of inter‐satellite distance at
(2l+1) × (l+1) distinct frequencies. For example, the 0S2 mode excites gravitational perturbation at 15
different frequencies, regrouped in l+1= 3multiplets in the along‐track KBR data. One group of five singlets
are below 1 CPR, where there is a possibility of being distinguished from other geophysical perturbations.
We validated our analytic model using results from the numerical orbit integration. It was found that the

0S2 mode of the 2004 Sumatra earthquake is predicted to yield, through gravitational change, range‐rate
perturbation with a peak‐to‐peak variation of 0.5 μm/s at a period of roughly 12 hr. Our synthetic test for
the 2004 Sumatra earthquake indicated that along‐track excitations due to other gravest normal modes
are within the actual error of GRACE KBR data.

We applied wavelet analysis to obtain 2‐D time‐frequency map of the actual GRACE KBR residual data in
December 2004. A discernable transient signal was observed at the (predicted) frequency of ~0.022 mHz
right after the 2004 Sumatra earthquake on 26 December from the time‐frequency spectrum. According to
our analytical model, it is known that the frequency of 0.022 mHz is the one associated with the largest exci-
tation due to the football mode 0S2. However, it seems that the large remaining error of the accelerometers at
low frequencies (after calibration) interferes with the seismic gravitational signals particularly at frequencies
lower than 1 CPR; this makes it difficult to distinguish the free oscillation signals from the GRACE
accelerometer errors.

The recently‐launched GRACE‐FOmission has demonstrated inter‐satellite ranging a few times better than
GRACE using microwaves and ~20 times better using its laser ranging interferometer (Flechtner et al., 2014;
Webb, 2018). The enhanced performance of inter‐satellite ranging techniques may lead to reliable detection
of not only lowest frequency (as shown in this study) but also higher frequency gravitational changes from a
larger number of earthquakes of smaller magnitudes.

The gravitational perturbation by the 0S2mode of free oscillations is a non‐negligible force even for higher alti-
tude satellites such as LAGEOS and Starlette. We found that for the first 7 days following the 2004 Sumatra
earthquake, the accelerations caused by free oscillations are noticeably above the expected non‐conservative
force model errors (Hedin, 1987; Knocke et al., 1988; Miliani et al., 1987; Rubincam, 1988); see Figure S8
and the relating text in the supporting information. This illustrates that the geodetic satellites, tracked by
Satellite Laser Ranging (SLR), could contribute potentially to the estimation of the harmonic coefficients
representing the free oscillations from great earthquakes provided the errors in the SLR data (e.g., Appleby
et al., 2016), the Terrestrial Reference Frame (TRF), and force modeling could be properly accommodated.

Another proposed way of measuring gravitational changes of earthquakes from space is using the next‐
generation superconducting gravity gradiometer (SGG; Griggs et al., 2014; Griggs et al., 2017) with technol-
ogy readiness level 4 and a gradiometer based on cold atom interferometry (Carraz et al., 2014). Specifically,
the SGG uses stable persistent currents arising from absolutely stable quantized magnetic flux to cancel the
common‐mode acceleration of the spacecraft (such as atmospheric drag and solar radiation pressure). The
tensor SGG measurement will not include the common‐mode in all six degrees of freedom. The linear and
angular acceleration exclusion is better at low frequencies because the acceleration itself becomes small at
low frequencies. It will permit reliable measurements of the Earth's gravitational gradients at low frequency,
leading to a favorable condition for detecting the Earth's free oscillations. A simulation analysis shows that

gravitational gradient changes excited by 0S2 could be 1 order of magnitude larger than the SGG instrument
noise at lower frequencies (see Figure S9).

The satellite gravimetry techniques can provide “spatial” information of the free oscillation eigenmodes,
while the ground‐based gravimeters (point‐wise measurements) can only provide information about the
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frequency and damping of the excited modes. Both types of data are complementary and useful to constrain-
ing the Earth's interior structure, although it is uncertain how much “new” information the spaceborne
detection of free oscillations may bring for the Earth's structure beyond the current knowledge from
ground‐borne seismic and gravimetric instruments.

Recently, transient gravitational perturbations were demonstrated to be useful in detecting earthquakes
before the P wave arrival, and thus, helpful to earthquake early warning (Montagner et al., 2016; Vallée
et al., 2017). These studies elaborated on modeling of earthquake‐induced gravitational signals based on
ground‐borne seismometers (i.e., accelerometers) by considering the spontaneous gravitational force caused
by ambient density perturbation and the inertial acceleration affecting the instrument housing. Both accel-
erations are generally of the same order of magnitude with the opposite sign (Juhel et al., 2018), yielding
smaller acceleration measurements by seismometers. The satellite‐borne measurements, on the other hand,
are only sensitive to gravitational forces. On‐going development of improved space‐borne gravimetric sen-
sors and proposed future satellite missions (Griggs et al., 2017; National Academies of Sciences,
Engineering, and Medicine, 2018; Rakholia et al., 2017) will bring new kinds of global observations helpful
to advancing our understanding of earthquakes and mitigating earthquake hazards.
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