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Abstract—Based on a simple physical model, we derive a

formula for the energy radiated into a tsunami by a dynamic

deformation of the ocean floor. We use the analytical solutions

developed by J.L. Hammack, Jr. (1972, Tsunamis – A model of

their generation and propagation, Ph.D. Dissertation, 261 pp.,

California Institute of Technology, Pasadena) to show that, in

addition to its expected dependence on the source rise time, and

even in the limiting case of an instantaneous source, the energy of

the tsunami is controlled by the ratio of water depth to source size.

For very large earthquakes, these results have no impact on the

time-honored approximation which uses the static deformation of

the ocean floor as a set of initial conditions of the surface dis-

placements for numerical simulations, but they provide insight into

the theoretical limits of this practice.

Keywords: Tsunami energy, theoretical hydrodynamics,

Shallow water approximation.

1. Introduction

1.1. Background and Motivation

In most numerical simulations of tsunamis gen-

erated by earthquakes, the seismic source is taken as

an instantaneous deformation of the ocean floor,

directly transposed to the ocean surface and then used

as an initial condition for the hydrodynamic equa-

tions governing the propagation of the tsunami (e.g.,

Titov et al. 2016). In reality, this time-honored

practice constitutes a ‘‘static’’ approximation, as

documented, for example, by the recent work of

Derakhti et al. (2019) who have examined in detail

the influence of dynamic parameters such as rise time

of the parent earthquake on tsunami amplitudes.

However, this approach remains legitimate in the

overwhelming majority of cases since the duration of

an earthquake source is generally negligible com-

pared with the time it takes a tsunami to propagate

over the dimension of its source area.

It is attractive, from the standpoint of global

Physics, to characterize a tsunami through its energy

ETSU initially delivered at the source, since it

provides an integrated estimate of the size of the

phenomenon, and allows a meaningful comparison

with other physical processes. Our goal in the present

paper will be to investigate the influence of dynamic

parameters on ETSU in the simplified model of the

uplift of a plug of ocean floor. We conclude that, in

addition to rise time, the ratio of water depth to

source size can play a crucial role in controlling the

energy available to the development of the tsunami,

but we confirm that for large earthquakes, the static

approximation remains valid.

1.2. Previous Work on Tsunami Energy

Attempts to quantify the energy transported by a

tsunami through an oceanic basin can be traced back

to Iida (1963) and Munk (1963). In a landmark

contribution. Kajiura (1981, Eq. (12)) obtained a

formula expressing the energy of a tsunami generated

by an instantaneous double-couple dislocation buried

in a elastic half-space underlying an oceanic column,

which Okal (2003) has rewritten as

EKaj: ¼ 1

24=3
q g

l4=3
e2=3max � M

4=3
0 � FKaj: ð1Þ

where q is the density of water, l the rigidity of the

Earth, g the acceleration of gravity, M0 the seismic

moment of the source, and emax the elastic strain

release; FKaj: is a non-dimensional average of the
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square of the vertical displacement of the ocean floor

above the source, scaled to the seismic slip on the

fault. The two main properties of (1) are the growth

of the energy as M
4=3
0 , i.e., faster than the seismic

moment, and its independence on the depth h of the

oceanic water column. Okal (2003, Eq. (57)) showed

further that (1) is in general agreement with an esti-

mate of the energy based on the representation of the

tsunami as a branch of the normal modes of the Earth,

following Ward (1980):

EModes ¼ 0:22 q g

l4=3
e2=3max M

4=3
0 ¼ 0:22 q g e2=3max � P

4=3
0

ð2Þ

where P0 ¼ SDu is the so-called ‘‘potency’’ of the

source, with units of volume (King 1978; Ben-Me-

nahem and Singh 1981).

Later studies of tsunami energy consisted mainly

of interpreting tidal gauge records in terms of the

total energy radiated into the [Pacific] Ocean, and of

studying its decay with time through scattering and

absorption at coastal boundaries, as initially proposed

by Munk (1963). Van Dorn (1984) and later Rabi-

novich et al. (2013) expressed tsunami energies

through a ‘‘tsunami energy index’’ E0 (with dimen-

sions of surface) scaling the square of the tsunami

energy, integrated from its amplitude, to the size of

the oceanic basin, and to the volumetric weight qg of

the ocean. When combined with (2), this leads to

E0 � 1

20
e2=3max

P
4=3
0

a2
ð3Þ

where a is the radius of the Earth, and taking the

surface of the Pacific Ocean as 1/3 that of the whole

Earth. Equation (3) predicts values of E0 ¼ 1100

and 430 cm2 for the 1960 Chile and 1964 Alaska

tsunamis, respectively, in good agreement with those

obtained by Van Dorn (1984), and of 125, 43, and 2

cm2, for the 2009 Samoa, 2010 Chile and 2011

Tohoku events, generally compatible with the upper

bounds proposed by Rabinovich et al. (2013).

Dutykh and Dias (2009) later studied the evolu-

tion of the tsunami energy with time, by considering

differential equations governing the vertical integral

over the ocean column of the volumetric densities of

kinetic and gravitational energy.

Our approach here will be to consider the energetics

of the dynamic uplift of a plug at the ocean floor, under

scenarios for which analytical solutions to the equations

of hydrodynamics are available.

2. The Formula

We consider here the two-dimensional model of a

flat oceanic layer of thickness h (Fig. 1). The system

is initially at equilibrium, and at time t ¼ 0þ, a plug

of elementary surface dS is pushed upwards, the

deformation ceasing at time T; similar results would

be obtained for a downwards motion (f\ 0). At any

given time t (0\ t � T), the plug has moved by f ðtÞ
and the ocean surface above it has been deformed by

g ðtÞ, which is the amplitude of the tsunami generated

above the plug by the deformation. Note that we do

not assume that g ¼ f.
In order to move upwards, the plug has to work

against the local pressure P which is the sum of the

original pressure at equilibrium, Peq ¼ q g h, and of

an overpressure p�ðtÞ, itself the combination of the

effect of moving the floor up by fðtÞ and of the

dynamic overpressure p(t) which accompanies the

tsunami:

PðtÞ ¼ Peq þ p� ðtÞ ¼ Peq � q g f ðtÞ þ p ðtÞ
ð4Þ

The plug is then exerting on the water layer a force

directed upwards dF ¼ P dS whose elementary work

during deformation from f to f þ df is

h

ζ

η

dF

dS

P

Figure 1
Schematics of the dynamic uplift of a plug of section dS in an

ocean of depth h. At the time considered, the amplitude of the

deformation is f, and the displacement of the surface above it is g.
The force dF works against the pressure ½P ¼ q g ðh � fÞ þ p �.

Note that g 6¼ f
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dW ¼ dF � df ¼ ½ q g ðh � f Þ þ p � � dS � df

ð5Þ

The total energy transmitted to the water column

during the deformation is the integral of (5):

dEtotal ¼
Z fðTÞ

0

q g ½h � f ðtÞ� � dS � df

þ
Z T

0

p ðtÞ � dS � df
dt

� dt

ð6Þ

Regardless of the time history of the function f ðtÞ,
the first integral amounts to

dEPot: ¼ qdS fðTÞ ½h � fðTÞ =2 � g ð7Þ

which represents the potential energy gained by the

mass of displaced water, q dS f ðTÞ, between its ini-

tial position in which its center of mass was at

altitude fðTÞ = 2 above the ocean floor, and its final

resting position where it is distributed along an infi-

nitely thin film of water at the surface of the ocean

(assumed infinite along x), at altitude h above the

undeformed ocean floor.

The second integral in (6), which is the work

performed in excess of this eventual change in

potential energy, is transferred to an oscillation of the

water column and represents the energy of the

tsunami:

dETSU ¼ dEtotal � dEPot: ¼ dS

Z T

0

p
df
dt

� dt

ð8Þ

which can be generalized to the three-dimensional

case of an extended area R of deformation of the

ocean floor where f can vary laterally:

ETSU ¼
Z Z

R
dx dy

Z T

0

p ðx; y ; tÞ o f ðx; y; tÞ
ot

� dt

ð9Þ

The traditional approach (Kajiura 1981) makes two

approximations. First it assumes that g ðx; y; tÞ is

identically equal to f ðx; y; tÞ, i.e., that during the

deformation, the water displaced at the bottom is

simply transferred to the surface where it creates a

hump of identical shape; in other words, the thickness

of the water column is always h, for all (x; y) and

t � T . Second, it assumes that the dynamic over-

pressure p ðx; y; tÞ is simply the hydrostatic term

p ðx; y; tÞ ¼ q g g ðx; y; tÞ ð10Þ

This leads to the classic formula (Okal and Synolakis

2003; Dutykh and Dias 2009)

EStatic ¼ 1

2
q g

Z Z
R

½ f ðx; y; TÞ � 2 � dx dy

ð11Þ

where f ðx; y; TÞ is the final ‘‘static’’ deformation of

the ocean floor. Note the proportionality of the energy

to R and f2, which under scaling laws (Geller 1976),

grows globally as M
4=3
0 , in agreement with the results

of Kajiura (1981) and Okal (2003); we also verify

that (11) is obviously unchanged for a downward

motion (f\ 0).

A clear illustration of the limitation of the first

approximation is given e.g., by Derakhti et al. (2019),

who confirmed that slow deformations will generally

lead to surface amplitudes g smaller than the bottom

deformation f. Under such conditions, but assuming

that the second approximation (10) still holds,

Equation (9) becomes

ETSU ¼ q g

Z Z
R

dx dy

Z T

0

g ðx; y; tÞ

o f ðx; y; tÞ
ot

� dt ¼ ESWA

ð12Þ

The limitation of the second approximation is rooted

in the fact that, for sufficiently high frequencies (or

wavenumbers k), the tsunami eigenfunction attenu-

ates with depth. This is illustrated for example by the

fact that submarines below about 150 m do not feel

weather-induced surface swell. Under this model, and

in the case of a monochromatic wave with

wavenumber k, the overpressure p now taken at the

depth ðh � fÞ becomes (e.g., Gill 1982; Dean and

Dalrymple 2000):

p ðx; y; tÞ ¼ q g
g ðx; y; tÞ

cosh kðh � fÞ � q g
g ðx; y; tÞ
cosh kh

ð13Þ

The term ð1 = cosh khÞ has been called a ‘‘pressure

response factor’’ by Dean and Dalrymple (2000). It is

clear that it quantifies the dispersion of the wave and

goes to 1 when kh ! 0, i.e., under the Shallow-

Water Approximation [hereafter SWA]. For this

reason, we refer to ETSU given by Eq. (12) as ESWA.

Vol. 178, (2021) The Energy of a Tsunami Generated 4987



Saito (2017) has also discussed limitations on the

relation between p and g outside the SWA.

A number of fundamental physical properties are

inherent in the above derivation. First, the origin of the

tsunami rests in the thermodynamically irreversible

character of the deformation: at any given time t and

because of the term p in (4) and hence (9), the total work

spent is larger than strictly necessary if the system was

constantly in equilibrium with a thickness ðh � fðtÞÞ.
This is similar to the case of extending a spring by

hanging a constant mass at its extremity, which results

in an extra work of its weight, over and beyond the

(elastic) potential energy eventually stored in the

extended spring at equilibrium, thus forcing the oscil-

lation of the spring. In both instances, it is easily

verified that the energy thus ‘‘wasted’’ (in the oscilla-

tion of tsunami waves or of the spring) is reduced by a

factor of 2 if the deformation is decomposed into two

halves, separated by enough time to allow the oscilla-

tion to decay and the system to reach an intermediate

equilibrium. It would eventually vanish in the limit of a

infinite number of elementary processes, in which case

the deformation would then become reversible.

Second, this last remark underlines the thermody-

namic relationship between a fast transformation and its

irreversible character, expressed as the amount of

energy wasted in the process. As investigated in detail,

e.g., by Derakhti et al. (2019), the amplitude of a tsu-

nami over a rising plug decreases strongly with

increasing rise time of the deformation. In lay terms, a

tsunami is generated because the ocean floor deforms

too fast, and as such irreversibly. In particular, no tsu-

nami is generated during the interseismic interval of the

tectonic cycle, when the ocean bottom, locked at the

interplate contact, buckles at tectonic rates of a few cm/

yr, even though the total deformation accumulated

between two mega-thrust earthquakes is of course of the

same amplitude (but with opposite sign) as that occur-

ring during such events; but one scenario takes over a

hundred years, the other a few tens of seconds.

3. Application to Analytical Models

The question of the exact history of the height of

the ocean surface, g, during a deformation of the

ocean floor f of finite duration has been investigated

both theoretically and numerically. In the present

paper, we will consider two scenarios for which

Hammack (1972) derived relatively simple analytical

solutions to the equations of hydrodynamics. Appli-

cation of our results in the context of numerical

solutions will be the subject of a later publication.

3.1. The Two-dimensional Case

Hammack (1972) first considers a two-dimensional

ocean of depth h, with a linear plug of length 2b centered

at x ¼ 0 (Fig. 2; red labels). The model has transla-

tional symmetry in the y direction, which is dropped

from all further calculations, and mirror symmetry

about x ¼ 0. His strategy consists of applying a spatial

Fourier transform (x ! k) followed by a temporal

Laplace transform (t ! s). The surface displacement

is then obtained as (Hammack 1972; Eq. (3.29)):

g ðx; tÞ ¼ 1

2p

Z 1

�1

e�ikx

cosh kh

1

2ip

Z
Br:

e st � s2

s2 þ x2

ef ðk; sÞ � ds

� �
� dk

ð14Þ

where for each value of k, the angular frequency x is

given by the classic dispersion relation

h

ζ

η

z

x
r

b
r0

xFar
rFar

2-D

3-D

Mirror Symmetry

Cylindrical Symmetry

Figure 2
Sketches of the models used by Hammack (1972). The two-

dimensional model, labeled in red, has translational symmetry in

the y direction perpendicular to the figure, and mirror symmetry

about x ¼ 0. The cylindrical model, labeled in green, has

azimuthal symmetry about the axis z. In both instances, a plug of

ocean floor (light brown) is uplifted into the ocean column (blue),

of initial thickness h. At any given time, the uplift of the plug is f,
and the deformation of the surface g. The far-field energy flux is

computed at the [large] range xFar (or rFar)
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x2 ¼ g k � tanh ðkhÞ ; ð15Þ
ef ðk; sÞ is the double Fourier-Laplace transform of

the displacement f ðx; tÞ, and the integral over s is

taken along a Bromwich contour (Boas 1983; p. 662).

In general, the displacement f is taken as independent

of x inside the plug.

We will consider here the cosine time function

used by Hammack (1972), with a finite duration T,

which provides a realistic representation of a seismic

source. The space-time history of deformation of the

bottom of the ocean is then given by

f ðx; tÞ ¼ f0 H ðb2 � x2Þ

� 1

2
ð1 � cos jtÞH ½t ðT � tÞ� þ H ðt � TÞ

� �

ð16Þ

where H is the Heaviside function, and j ¼ p=T

characterizes the rise time of the source, as shown on

Fig. 3. Note that this time function is also used by

Derakhti et al. (2019) with the notation tr for the rise

time T. The derivative _f takes the form

_f ðx; tÞ ¼ 1

2
f0 j � H ðb2 � x2Þ � H ½t ðT � tÞ� � sin jt

ð17Þ

and Eq. (14) then becomes a simple integral over k

(Hammack 1972; Eq. (3.41)):

g ðx; tÞ ¼ f0
p

Z 1

0

cos kx sin kb

k cosh kh
� j2

j2 � x2
�

� cosxt � cos jt þ H ðt � TÞ ðcos x ðt � TÞ½
þ cos jtÞ � � dk

ð18Þ

where x is given by (15). It can be verified that the

integrand in (18) remains continuous when x ! j.

Since this integral is over wavenumber k, the

dynamic pressure p ðx; tÞ can be obtained by simply

factoring into the integrand the pressure response

factor ð1= cosh khÞ defined in (13):

p ðx; tÞ ¼ f0 q g

p

Z 1

0

cos kx sin kb

k cosh2 kh
� j2

j2 � x2
�

� cosxt � cos jt þ H ðt � TÞ½
ðcos x ðt � TÞ þ cos jtÞ � � dk

ð19Þ

The value of ETSU is then obtained by substituting

(17) and (19) into (9):

ETSU ¼ f0 j
Z b

0

dx

Z T

0

p ðx; tÞ sin jt � dt

ð20Þ

In the present study, we investigate the dependence of

ETSU on the source rise time by considering 12 values

of j, geometrically spaced between 0.0093 and 5.24

s�1 (rise times p=j from 338 to 0.6 s), for five values

h ¼ 0:2, 0.5, 1, 2 and 4 km of the ocean depth, and

five values b ¼ 3, 5, 7, 10 and 15 km of the half-

width of the plug. We compute numerically the

integrals (18) and (19) at 151 distances x, equally

spaced between 0 (the center of the plug) and 15 km

(the edge of the largest plug considered), and for

10,000 time steps, which are adjusted to the value of

j, in order to adequately sample the rise of the

source. We then substitute (19) into (20), in which

ETSU now has dimensions of force (energy per unit

length in the y direction). We scale the result to a

similarly redimensioned version of (11):

EStatic ¼ q g

2

Z b

�b

dx f ðx; TÞ½ � 2 ¼ q g b f20 ð21Þ

and plot on Fig. 4 representative cases (b ¼ 3; 7 and

15 km, respectively) of the ratio ðETSU =EStaticÞ as

solid lines color-coded for different ocean depths. In

Fig. 5, the same values are plotted for selected depths

h, color-coded for the various values of the half-

source width b.

In addition, we also include (as similarly color-

coded open squares) the values ðESWA=EStaticÞ
obtained under the SWA assumption that the over-

pressure p simply takes its hydrostatic form (10).

0

ζ (t)

ζ0

T = π /κ

T = 70 s
κ = 0. 045 s−1

Figure 3
Example of a cosine source time function (16) used in this study
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Next, we carry out an independent evaluation of

the energy of the tsunami by considering a far-field

value, xFar , of the range x, and computing the integral

over time of the energy flux through the wavefront at

xFar. This strategy is inspired by the classic algorithm

for the computation of the energy radiated by a

seismic source from teleseismic recordings of its

P waves (Boatwright and Choy 1986).

Specifically, we prolong mathematically the solu-

tion (18) inside the water column (z ¼ 0 at the

surface, �h at the bottom) to obtain the particle

velocities vx and vz:

vx ðx; z; tÞ ¼ f0
p

Z 1

0

sin kx sin kb

k coshkh
� cosh kðh þ zÞ

sinh kh
�

j2

j2 � x2
�

� x sin xt � j sinjt½
þH ðt � TÞ ðx sinx ðt � TÞ þ j sinjtÞ� � dk

ð22Þ

(a)

(b) (c)

Figure 4
Plots of the ratio ETSU =EStatic as a function of the parameter j of the source, for representative values of the half-width b of a two-dimensional

source: a 3 km; b 7 km and c 15 km. In each frame, lines of various colors relate to various depths of the oceanic column, from magenta (200

m) to red (4 km). The abscissa is linear in log10 j with corresponding values of T ¼ p=j shown along the top axis. Solid lines represent

individual values computed using (19), (20) and (21); solid triangles represent far-field tsunami energies estimated independently (26). Open

squares represent the Shallow-Water Approximation ratios ESWA =EStatic computed using (12). The vertical gray dotted lines, corresponding to

Tt ¼ 60 s, identify the regime (to the left) where the rise time controls the dominant wavenumber K (see Sect. 4)
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vz ðx; z; tÞ ¼ � f0
p

Z 1

0

cos kx sin kb

k cosh kh
� sinh kðh þ zÞ

sinh kh
�

j2

j2 � x2
�

� x sin xt � j sin jt½
þH ðt � TÞ ðx sinx ðt � TÞ þ j sin jtÞ� � dk

ð23Þ

(note that the conservation of mass is easily verified

since ovx=ox þ ovz=oz ¼ 0, and similarly, ovx=oz ¼
ovz=ox expresses that the flow is irrotational). The

local density (per unit length along x and y) of kinetic

energy along the wavefront is then obtained as

eKin ¼ q
2

Z 0

�h

ðv 2
x þ v 2

z Þ � dz ð24Þ

Similarly, the local density of potential energy is

ePot ¼ q g

2
g 2 ðxFar; tÞ ð25Þ

The total energy of the tsunami, ETotal (per unit length

along the y direction) is simply the integral over time

of the total flux of kinetic and potential energy

through the wavefront at xFar:

ETotal ¼ 2

Z 1

0

ðeKin þ ePotÞ � U � dt ð26Þ

where U is the group velocity of the wave. The factor

2 in (26) accounts for the contribution of the wave

(a)

(c)(b)

Figure 5
Same as Figure 4 for representative values of ocean depth, a 0.2 km, b 1 km, c 4 km. In each frame, color-coded plots are given for all five

values of the source half-width b. Symbols as in Figure 4

Vol. 178, (2021) The Energy of a Tsunami Generated 4991



propagating towards negative x. Note that since the

wave is dispersed outside the SWA, different com-

ponents of the integrand in (18) will travel with

different group velocities:

U ðkÞ ¼ d x
dk

¼ g

2x
tanh kh þ kh ð1 � tanh2 khÞ

� �

ð27Þ

Assuming that no energy is exchanged across

wavenumbers k, it is possible to circumvent this

difficulty by directly multiplying the integrands in

(18), (22) and (23) by ðU1=2Þ. In all cases, we choose

xFar large enough that the wave has not yet reached it

when the deformation at the source is complete

ðt ¼ T); in practice xFar is at least 20 km, but can be

as large as 90 km for the longest rise times and

deepest oceans. Finally, we have verified numerically

that the contributions of (24) and (25) are equal

(generally to within 1%), as expected since at any

given point, the energy of the tsunami oscillates

between its kinetic and potential forms.

The values of ETotal are plotted as the solid

triangles on Figs. 4 and 5, color-coded with the same

conventions as ETSU and ESWA.

3.2. The Cylindrical Case

Another class of models investigated by Ham-

mack (1972) is set in three-dimensional space with

cylindrical symmetry, and considers a circular plug of

radius r0 on the ocean floor (green labels on Fig. 2).

The equations of hydrodynamics are solved in a

system of cylindrical polars, with the spatial Fourier

transform replaced by a Hankel transform of order 0

(r ! k):

bf ðk; tÞ ¼
Z 1

0

J0 ðkrÞ f ðx; tÞ � r dr ð28Þ

followed by the same temporal Laplace transform,

eventually leading to (Hammack 1972; Eq. (3.102)):

g ðr; tÞ ¼
Z 1

0

k J0 ðkrÞ
cosh kh

1

2i p

Z
Br:

est � s2

s2 þ x2

ebf ðk; sÞ � ds

� �
� dk

ð29Þ

replacing Equation (14), and in which
ebf is the double

Hankel-Laplace transform of f. In these equations, Jm
is the standard Bessel function of order m. Assuming

the same rise time function for the plug, the defor-

mation of the floor is now given by

f ðr; tÞ ¼ f0 H ðr0 � rÞ � 1

2
ð1 � cos jt Þ

�

H ½t ðT � tÞ� þ H ðt � TÞ �
ð30Þ

and our computations are simply adapted to the new

cylindrical symmetry, following Hammack (1972).

Equations (18) and (19) are replaced by

g ðr; tÞ ¼ f0 r0
2

Z 1

0

J0 ðkrÞ J1 ðkr0Þ
cosh kh

� j2

j2 � x2
�

� cosxt � cos jt þ H ðt � TÞ ðcos x ðt � TÞ½
þ cos jtÞ � � dk

ð31Þ

and

p ðr; tÞ ¼ q g f0 r0
2

Z 1

0

J0 ðkrÞ J1 ðkr0Þ
cosh2 kh

� j2

j2 � x2
�

� cosxt � cos jt þ H ðt � TÞ½
ðcos x ðt � TÞ þ cos jtÞ � � dk

ð32Þ

while the energy of the tsunami (this time in actual

units of energy) now takes the form

ETSU ¼ p f0 j
Z r0

0

r dr

Z T

0

p ðr; tÞ � sin jt � dt

ð33Þ

We compare it to EStatic and ESWA now given by

EStatic ¼ q g

2

Z r0

0

2p r dr ½ f ðr; TÞ � 2 dt

¼ 1

2
q g p r 2

0 f
2
0

ð34Þ

and
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ESWA ¼ pqg f0 j
Z r0

0

r dr

Z T

0

g ðr; tÞ sin jt � dt

ð35Þ

Similarly, in the far field, at distance rFar , Eqs. (22)

and (23) are replaced by

vr ðr; z; tÞ ¼ f0 r0
2

Z 1

0

J1 ðkrÞ J1 ðkr0Þ
cosh kh

�

cosh kðh þ zÞ
sinh kh

� j2

j2 � x2
�

� ½x sin xt � j sin jt

þ H ðt � TÞ ðx sin x ðt � TÞ þ j sin jt � � dk

ð36Þ

vz ðr; z; tÞ ¼ � f0 r0
2

Z 1

0

J0 ðkrÞ J1 ðkr0Þ
cosh kh

�

sinh kðh þ zÞ
sinh kh

� j2

j2 � x2
�

� ½x sin xt � j sin jt

þ H ðt � TÞ ðx sin x ðt � TÞ þ j sin jt � � dk

ð37Þ

which again satisfy div v ¼ 0 and curl v ¼ 0. The

total tsunami energy (in units of energy) is the inte-

gral over time t of the energy flux through the circular

wavefront at radius rFar

ETotal ¼ 2p rFar q �
Z 1

0

U

� 1

2
ðv 2

r þ v 2
z Þ þ 1

2
g g 2 ðrFar; tÞ

� �
� dt

ð38Þ

the dispersion of U with k being similarly taken into

account by multiplying the integrands in (31), (36)

and (37) by the square root of U, given by (27)

Figures 6 and 7 are exact counterparts to Figs. 4

and 5 in the new case of cylindrical symmetry.

4. Discussion

Figures 4 5 6 and 7 plot the ratio of the tsunami

energy ETSU scaled to its classic value EStatic com-

puted under the assumption g ¼ f, as a function of

the rise time of the source, each of them for 60

different scenarios, with additional cases computed at

intermediate half-widths b (or radii r0) and depths h.

The value of the ratio ETSU =EStatic expresses the

energetic efficiency as a tsunami source of the par-

ticular model considered.

Our first result is the excellent agreement between

the energy ETSU estimated from Eq. (9) and its value

computed by integrating its flux in the far field.

As expected, the tsunami efficiency is found to

decrease with increasing rise time in all scenarios,

which is in line with results obtained through

numerical simulations for the surface amplitudes g
(e.g., Derakhti et al. 2019). This simply expresses

that for long rise times, the initial deformation cannot

be fully grown at the surface, since the tsunami has

the time to evacuate substantial amounts of displaced

water outside the source area before the floor can

reach its full deformation.

4.1. Applicability of the Shallow Water

Approximation

We first discuss the effect of dispersion on the

tsunami efficiency by further scaling ETSU to its value

obtained under the Shallow-Water Approximation,

ESWA given by (12). The ratio ESWA =ETSU , which is

always larger than 1, can be used to quantify this

effect through the dimensionless variable

X ¼ cosh�1 ESWA =ETSU
� �

ð39Þ

that constitutes an inverse measure of the quality of

the SWA, which will be valid for X ! 0 but dete-

riorate with growing X. For any given ocean depth h,

X can be interpreted through an equivalent, or dom-

inant, wavenumber K ¼ X=h. The latter will of

course be a complex combination of the source size

(b or r0), the depth h of the ocean, and the rise time T

of the source. The parameter X is also a measure of

the separation between the solid curves (ETSU) and

the open squares (ESWA) on Figs. 4, 5, 6 and 7.

We plot on Fig. 8 the parameter X as a function of

the square root of the ratio of ocean depth to source

size (h/b in translational symmetry, or h=r0 in

cylindrical symmetry). We find that X follows a

two-stage behavior: for large j (short rise times T), it

grows linearly, which means that the dominant

wavenumber K is inversely proportional to the
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geometrical mean of source size and water depth. As

j decreases (and T increases), the duration of the

source plays a growing role in controlling the

dominant wavenumber and the parameter X, whose
values are reduced (especially in the 2–D case); the

SWA is then better verified. We find empirically that

the change in behavior occurs in our geometries for

the three largest values of T. That threshold,

Tt � 60 s, shown as a grey vertical dashed line on

Figs. 4, 5, 6 and 7, corresponds grossly to the elbows

ending the flat regime of constant ratios ETSU =EStatic

for the various curves on those figures. Data points

beyond Tt are shown as light grey symbols on Fig. 8.

We then regress the datasets for the 9 largest

values of j and obtain

X ¼ 0:643
ffiffiffiffiffiffiffiffiffi
h=b

p
ð2�DÞ or X

¼ 0:981
ffiffiffiffiffiffiffiffiffiffiffiffi
h=r0

p
ð3�DÞ ð40Þ

which suggests the extremely simple result that, for

this range of solutions, the dominant wave number K

is given approximately by the inverse of the geo-

metrical mean of source radius and depth,
ffiffiffiffiffiffiffiffiffi
r0 h

p

(3–D) or of total source width and depth,
ffiffiffiffiffiffiffiffiffiffi
2b h

p

(2–D). However, as the ratio h/b is increased, X
features a faster growth, resulting in a curvature of

the distribution, particularly in the case of the 3–D

circular source. We have verified that this curvature,

which can be modeled with the parabolic functions

(a)

(b) (c)

Figure 6
Same as Figure 4 for radial symmetry for source radii r0 ¼ 3 km (a), 7 km (b), and 15 km (c)
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X ¼ 0:551
ffiffiffiffiffiffiffiffiffi
h=b

p
þ 0:126 ðh=bÞ ð2�DÞ

ð41aÞ

or

X ¼ 0:781
ffiffiffiffiffiffiffiffiffiffiffi
h=r0

p
þ 0:275 ðh=r0Þ ð3�DÞ

ð41bÞ

is statistically significant since in both cases, it passes

an F–test (Dixon and Massey 1969) at the 99% level

(F ¼ 147 (2–D) and 284 (3–D) vs. F99 ¼ 6:72 for

225 points regressed with 2 vs. 1 degrees of freedom).

Finally, we note that in all cases, the parameter X is

larger, and hence the SWA poorer, for the radial

symmetry than for the translational one.

In summary, the domain of applicability of the

SWA for the computation of tsunami energy is

controlled by two independent factors: for fast rise

times T \ Tt, the equivalent wavenumber K is

governed by the combination of h and the size of

the source (b or r0); while for slow rise times T [ Tt,

their influence becomes predominant in controlling K

and X.

4.2. The limiting case of the instantaneous source

(j ! 1 or T ! 0)

We now explore in detail the behavior of the

efficiency ratio ETSU =EStatic for large j (fast sources

with short rise times): it goes asymptotically to a

(a)

(b)

(c)

Figure 7
Same as Fig. 5 for radial symmetry and all five source radii
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constant value Rlim, which is contoured on Fig. 9 as a

function of ocean depth h and source size (b or r0).

The most important result of our study is that Rlim

can be significantly less than 1, for large values of h

and/or small values of b (or r0). Under such

conditions, it is in simple terms impossible to reach

full efficiency (i.e., to pump into the tsunami the full

energy predicted by the simple formula (10)), even

for sources with instantaneous rise times. These

results generalize to the concept of tsunami energy

the so-called ‘‘Kajiura effect’’ (Kajiura 1963)

expressing the influence of the ratio of source size

to water depth on the amplitude of a tsunami wave

over a point source.

We further examine quantitatively the issue on

Fig. 10 by plotting Rlim as a function of the ratio (h/b)

for the 2–D models, or ðh=r0Þ in the cylindrical ones.

In the first case (plotted in red), we find a remarkably

linear dependence, regressing as

Rlim ¼ 1 � 0:507 ðh = bÞ ð42Þ

shown as the red long-dashed line on Fig. 10. An

improved estimate is obtained, especially for large h/

b, with the quadratic expression

Rlim ¼ 1 � 0:645 ðh = bÞ þ 0:151 ðh = bÞ 2 ð43Þ

(red dotted line), which provides a statistically better

fit (F ¼ 383 vs. F99 ¼ 7:74 (Dixon and Massey

1969)).

In the case of the 3-dimensional cylindrical

source, our results (in green on Fig. 10) indicate a

stronger decay of Rlim with ðh = r0Þ, regressed linearly

as

Rlim ¼ 1 � 0:810 ðh = r0Þ ð44Þ

(green long-dashed line on Fig. 10), and quadratically

as

Rlim ¼ 1 � 1:182 ðh = r0Þ þ 0:409 ðh = r0Þ 2

ð45Þ

(green dotted line), indicating a faster decay of Rlim,

but also with more curvature (F ¼ 5123).

Such variations of Rlim with the various geomet-

rical scales of the problem can be understood at least

qualitatively as follows. Values of Rlim less than 1

express the fact that, even for an instantaneous

deformation of the ocean floor, the displaced water

fails to reach the surface in the form of an equivalent

hump. In a liquid taken as incompressible, that water

flows laterally out of the source area. A dimensional

argument suggests that, in the 2-dimensional model

and again, per unit length in the direction y, the

volume of water in question is proportional to b. It

leaks laterally out of the source area through its edge

whose surface is proportional to h, suggesting that the

fraction of water not contributing to the tsunami

energy, (1 � ETSU =EStatic), will be indeed controlled

by the ratio ðh = bÞ. In the cylindrical model, the

volume of displaced water is proportional to p r20 and

the lateral surface is 2p r0 h, leading again to Rlim

controlled by (h = r0). However, that dependence is

slower than linear, as clearly verified in both cases

using the F–tests. Finally, for any given ratio h/b or

⎯ ⎯√ ⎯⎯⎯(h / b)

⎯ ⎯√⎯⎯⎯⎯(h / r0)

PA
R

AM
ET

ER
Ω

PA
R

AM
ET

ER
Ω

Figure 8
Dispersion parameter X, defined in (39) as a function of the square

root of the ratio of water depth to source size, in the two-

dimensional (Top) and three-dimensional (Bottom) geometries. The

light grey points correspond to small values of j (rise times

T [ 60 s). With these points excluded, the dashed lines are linear

regressions of the datasets, and the dotted lines quadratic ones. See

text for details
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h=r0, the cylindrical model is less efficient at

generating a tsunami, which simply expresses that

the water can escape laterally in all azimuths (i.e., in

two dimensions), whereas in the 2-dimensional

model, with its tacit translational symmetry along y,

it can leak only in the x direction.

4.3. Application to Realistic Earthquake Sources

While our new results are interesting from a

theoretical standpoint, they may bear only little direct

application to the case of realistic tsunamigenic

earthquakes, especially great ones. Because earth-

quake sources generally feature rise times much

shorter than the periods of the tsunamis they generate,

one generally considers as appropriate the ‘‘static’’

assumption of a direct transfer of the full displace-

ment f ðTÞ to the surface as a field of initial

conditions g ðt ¼ 0þÞ for numerical simulations.

However, we have seen above that the high-fre-

quency limit of the tsunami efficiency ETSU =EStatic is

controlled not only by rise time (T ¼ p=j), but also
by the geometrical parameters of the models.

For a large seismic source, the situation is made

complex by the heterogeneity of the bottom displace-

ment field, f, on account both of the double-couple

nature of the source which leads to a complex

distribution of uplift and subsidence (Mansinha and

Smylie 1971; Okada 1985), and of the occasionally

strong heterogeneity of the slip Du on the fault plane,

as exemplified during the 2011 Tohoku mega-thrust

event (Lay et al. 2011). Nevertheless, the models

studied above provide a framework for discussion. In

general, the fault length L is much larger than its

width W, and thus the 2-dimensional model may be

more directly applicable than its cylindrical counter-

part. For large earthquakes, W ¼ 2b is at least

several tens of km (and up to 200 km for truly

gigantic sources), and thus the ratio h = b remains

small, on the order of at most 1/3 and usually much

less, for a 5–km deep ocean. Figure 10 then suggests

that the energy efficiency of the source would be at
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Figure 9
Contour plots of the function Rlim ¼ lim

j!1
ðETSU =EStaticÞ as a function of depth h and half-width b (or radius r0) of the source (both in

logarithmic coordinates). Note that Rlim grows with b (or r0) and 1/h, and is always larger for the 2-dimensional geometry
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least 85 to 90% (amounting to at least 92% in

amplitude) with respect to the widely used ‘‘static’’

assumption.

At the lower end of the spectrum of seismic

sources, strongly deficient tsunami efficiency (on the

order of 50% or less) would require ratios h=b [ 1,

or h=r0 [ 0:5 in the cylindrical geometry which may

be more applicable to smaller seismic sources; this

would translate into seismic widths on the order of

W � 20 km in very deep waters (h ¼ 5 km), and

even less (8 km) in shallower ones (h ¼ 2 km). In

turn, under global scaling laws (Geller 1976), this

would correspond to seismic moments M0 � 5 �
1026 dyn*cm in deep water, and M0 � 3 � 1025

dyn*cm in shallow ones (Mw � 7:0 and 6.3, respec-

tively). While the former could generate observable

tsunamis, their effects would be constrained to the

near field where wave amplitudes are directly related

to local slip on the fault, and the concept of tsunami

energy, integrated over the source area, loses its

interest. We conclude that under most operational

conditions, large earthquake tsunamis with destruc-

tive effects in the far field will not be affected by the

limit to tsunami efficiency outlined in this study.

The application of this approach to the more

complex case of an underwater landslide will be the

subject of a separate study.
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