Passive margin earthquakes as indicators of intraplate deformation

Emily Wolin and Seth Stein
Northwestern University

April 23, 2010
Seismicity of the North American Passive Margin

Repeatedly studied, yet intriguing questions remain.

Selected references:
Gutenberg & Richter, 1954
Hashizume, 1973
Stein et al., 1979; 1989
Basham & Adams, 1983
Adams & Basham, 1989
Schulte & Mooney, 2005
Mazzotti & Adams, 2005

1929 Grand Banks, $M_w=7.2$

1933 Baffin Bay, $M_w=7.4$
Formation of a Passive Margin

- Continental and oceanic crust part of same plate
- Local stresses can reactivate old rift faults
- Most sedimentation stresses relax quickly
- Deglaciation may be significant, particularly for North America
Global Passive Margin Seismicity
1344-2003

Data from Schulte & Mooney, 2005

Data from Schulte & Mooney, 2005
Can passive margin earthquakes generate large landslides and/or tsunamis?

Can large landslides occur without a seismic trigger?

Important for evaluating seismic & tsunami hazards

Part I

1929 Grand Banks, $M_w=7.2$

1933 Baffin Bay, $M_w=7.4$

Events from Schulte & Mooney (2005), ANSS, and Earthquakes Canada

1920-2009
How is passive margin seismicity linked to glacial isostatic adjustment (GIA)?

Sella et al., 2007

http://earthguide.ucsd.edu/
Grand Banks, 1929

- November 18, 1929; $M_w=7.2$
- Enormous ($\sim 100 \text{ km}^3$) submarine landslide cut trans-Atlantic telegraph cables
- Tsunami responsible for 27 deaths

Earthquakes Canada; Hasegawa & Kanamori (1987)
Grand Banks, 1929

<table>
<thead>
<tr>
<th>Slope instability</th>
<th>Tectonic earthquake</th>
</tr>
</thead>
<tbody>
<tr>
<td>First motions +</td>
<td>Forward waveform modeling +</td>
</tr>
<tr>
<td>surface-wave spectra</td>
<td>CMT inversion</td>
</tr>
<tr>
<td>Single-force (landslide)</td>
<td>Double-couple</td>
</tr>
</tbody>
</table>

Problem: limited data

Alternative approach: examine aftershocks
Aftershock Duration

• Rate-and-state friction theory predicts aftershock duration inversely proportional to fault loading rate

• Expect long aftershocks in Grand Banks area, if a tectonic earthquake

• Expect few aftershocks, if a landslide

Stein & Liu, 2009
Grand Banks
Seismicity 1929-1950

Mechanism and fault planes from Bent (1995); event data from Earthquakes Canada
Mechanism and fault planes from Bent (1995); event data from Earthquakes Canada

Grand Banks
Seismicity 1929-1959
Grand Banks
Seismicity 1929-1979

Mechanism and fault planes from Bent (1995); event data from Earthquakes Canada
Grand Banks
Seismicity 1929-2009

Mechanism and fault planes from Bent (1995); event data from Earthquakes Canada
Grand Banks Aftershocks

Seismicity looks like a decaying aftershock sequence

Compare to 1933 Baffin Bay earthquake
Baffin Bay
Seismicity 1933-1943

1933 $M_w=7.4$

Mechanism and fault plane from Bent (2002); event data from Earthquakes Canada
Baffin Bay
Seismicity 1933-1953

Mechanism and fault plane from Bent (2002); event data from Earthquakes Canada
Baffin Bay
Seismicity 1933-1963

Mechanism and fault plane from Bent (2002); event data from Earthquakes Canada
Baffin Bay
Seismicity 1933-1973

Mechanism and fault plane from Bent (2002); event data from Earthquakes Canada
Baffin Bay
Seismicity 1933-2009

Mechanism and fault plane from Bent (2002); event data from Earthquakes Canada
Aftershocks of both earthquakes continue for decades

• Can’t place an upper bound on aftershock duration until “background” level of seismicity can be resolved
• Difficult to resolve due to short observational window
Is GIA a major control on seismicity?

1920-2009

Events from Schulte & Mooney (2005), ANSS, and Earthquakes Canada

Vertical Velocities (GPS)

IGb00
1 5 mm/yr
+ve
-ve
Comparison of GPS vertical velocities and total moment release (1920-2009)

Moment release is notably higher along deglaciated portion of the margin.

1929 Grand Banks, $M_w=7.2$

1933 Baffin Bay, $M_w=7.4$

Relatively uniform catalog (EqCan + ANSS + Schulte & Mooney)

Shorter time span
Comparison of GPS vertical velocities and total moment release (1568-2003)

Moment release is higher in deglaciated region despite completeness issues.

1929 Grand Banks, $M_w=7.2$

1933 Baffin Bay, $M_w=7.4$

Longer time span, but less uniform catalog (Schulte & Mooney only)
Conclusions

• Both the 1929 Grand Banks and 1933 Baffin Bay events were followed by similar long aftershock sequences.

• Thus, the 1929 Grand Banks landslide was most likely triggered by a large tectonic earthquake.

• Correlation of moment release with GPS velocities suggests that GIA is a major influence on seismicity of the North American passive margin.
Future Work

• Compare North American passive margin to other deglaciated and nonglaciated passive margins

• Expand comparison of GIA and moment release to include continental earthquakes

• Draw more detailed comparisons with GPS data